Do you want to publish a course? Click here

Learning Few-shot Open-set Classifiers using Exemplar Reconstruction

215   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We study the problem of how to identify samples from unseen categories (open-set classification) when there are only a few samples given from the seen categories (few-shot setting). The challenge of learning a good abstraction for a class with very few samples makes it extremely difficult to detect samples from the unseen categories; consequently, open-set recognition has received minimal attention in the few-shot setting. Most open-set few-shot classification methods regularize the softmax score to indicate uniform probability for open class samples but we argue that this approach is often inaccurate, especially at a fine-grained level. Instead, we propose a novel exemplar reconstruction-based meta-learning strategy for jointly detecting open class samples, as well as, categorizing samples from seen classes via metric-based classification. The exemplars, which act as representatives of a class, can either be provided in the training dataset or estimated in the feature domain. Our framework, named Reconstructing Exemplar based Few-shot Open-set ClaSsifier (ReFOCS), is tested on a wide variety of datasets and the experimental results clearly highlight our method as the new state of the art.



rate research

Read More

Few-shot class-incremental learning (FSCIL) aims to design machine learning algorithms that can continually learn new concepts from a few data points, without forgetting knowledge of old classes. The difficulty lies in that limited data from new classes not only lead to significant overfitting issues but also exacerbate the notorious catastrophic forgetting problems. Moreover, as training data come in sequence in FSCIL, the learned classifier can only provide discriminative information in individual sessions, while FSCIL requires all classes to be involved for evaluation. In this paper, we address the FSCIL problem from two aspects. First, we adopt a simple but effective decoupled learning strategy of representations and classifiers that only the classifiers are updated in each incremental session, which avoids knowledge forgetting in the representations. By doing so, we demonstrate that a pre-trained backbone plus a non-parametric class mean classifier can beat state-of-the-art methods. Second, to make the classifiers learned on individual sessions applicable to all classes, we propose a Continually Evolved Classifier (CEC) that employs a graph model to propagate context information between classifiers for adaptation. To enable the learning of CEC, we design a pseudo incremental learning paradigm that episodically constructs a pseudo incremental learning task to optimize the graph parameters by sampling data from the base dataset. Experiments on three popular benchmark datasets, including CIFAR100, miniImageNet, and Caltech-USCD Birds-200-2011 (CUB200), show that our method significantly outperforms the baselines and sets new state-of-the-art results with remarkable advantages.
We extend panoptic segmentation to the open-world and introduce an open-set panoptic segmentation (OPS) task. This task requires performing panoptic segmentation for not only known classes but also unknown ones that have not been acknowledged during training. We investigate the practical challenges of the task and construct a benchmark on top of an existing dataset, COCO. In addition, we propose a novel exemplar-based open-set panoptic segmentation network (EOPSN) inspired by exemplar theory. Our approach identifies a new class based on exemplars, which are identified by clustering and employed as pseudo-ground-truths. The size of each class increases by mining new exemplars based on the similarities to the existing ones associated with the class. We evaluate EOPSN on the proposed benchmark and demonstrate the effectiveness of our proposals. The primary goal of our work is to draw the attention of the community to the recognition in the open-world scenarios. The implementation of our algorithm is available on the project webpage: https://cv.snu.ac.kr/research/EOPSN.
Recent works seek to endow recognition systems with the ability to handle the open world. Few shot learning aims for fast learning of new classes from limited examples, while open-set recognition considers unknown negative class from the open world. In this paper, we study the problem of few-shot open-set recognition (FSOR), which learns a recognition system robust to queries from new sources with few examples and from unknown open sources. To achieve that, we mimic human capability of envisioning new concepts from prior knowledge, and propose a novel task-adaptive negative class envision method (TANE) to model the open world. Essentially we use an external memory to estimate a negative class representation. Moreover, we introduce a novel conjugate episode training strategy that strengthens the learning process. Extensive experiments on four public benchmarks show that our approach significantly improves the state-of-the-art performance on few-shot open-set recognition. Besides, we extend our method to generalized few-shot open-set recognition (GFSOR), where we also achieve performance gains on MiniImageNet.
Zero-shot learning (ZSL) enables solving a task without the need to see its examples. In this paper, we propose two ZSL frameworks that learn to synthesize parameters for novel unseen classes. First, we propose to cast the problem of ZSL as learning manifold embeddings from graphs composed of object classes, leading to a flexible approach that synthesizes classifiers for the unseen classes. Then, we define an auxiliary task of synthesizing exemplars for the unseen classes to be used as an automatic denoising mechanism for any existing ZSL approaches or as an effective ZSL model by itself. On five visual recognition benchmark datasets, we demonstrate the superior performances of our proposed frameworks in various scenarios of both conventional and generalized ZSL. Finally, we provide valuable insights through a series of empirical analyses, among which are a comparison of semantic representations on the full ImageNet benchmark as well as a comparison of metrics used in generalized ZSL. Our code and data are publicly available at https://github.com/pujols/Zero-shot-learning-journal
In computer vision applications, such as domain adaptation (DA), few shot learning (FSL) and zero-shot learning (ZSL), we encounter new objects and environments, for which insufficient examples exist to allow for training models from scratch, and methods that adapt existing models, trained on the presented training environment, to the new scenario are required. We propose a novel visual attribute encoding method that encodes each image as a low-dimensional probability vector composed of prototypical part-type probabilities. The prototypes are learnt to be representative of all training data. At test-time we utilize this encoding as an input to a classifier. At test-time we freeze the encoder and only learn/adapt the classifier component to limited annotated labels in FSL; new semantic attributes in ZSL. We conduct extensive experiments on benchmark datasets. Our method outperforms state-of-art methods trained for the specific contexts (ZSL, FSL, DA).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا