Do you want to publish a course? Click here

Measurement of splittings along a jet shower in $sqrt{s} = 200$ GeV pp collisions at STAR

60   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Jets are algorithmic proxies of hard scattered partons, i.e. quarks and gluons, in high energy particle collisions. The STAR collaboration presents the first measurements of substructure observables at the first, second and third splits in the jet clustering tree via the iterative SoftDrop procedure. For each of these splits, we measure the fully corrected groomed shared momentum fraction (zg) and groomed jet radius (rg). We discuss the evolution of jet substructure in both the angular and momentum scales which allows for a self-similarity test of the DGLAP splitting function. We compare the fully corrected data to Monte Carlo models, providing stringent constraints on model parameters related to the parton shower and non-perturbative effects such as hadronization.

rate research

Read More

We present the first inclusive measurements of the invariant and SoftDrop jet mass in proton-proton collisions at $sqrt{s}=200$ GeV at STAR. The measurements are fully corrected for detector effects, and reported differentially in both the jet transverse momentum and jet radius parameter. We compare the measurements to established leading-order Monte Carlo event generators and find that STAR-tuned PYTHIA-6 reproduces the data, while LHC tunes of PYTHIA-8 and HERWIG-7 do not agree with the data, providing further constraints on parameter tuning. Finally, we observe that SoftDrop grooming, for which the contribution of wide-angle non-perturbative radiation is suppressed, shifts the jet mass distributions into closer agreement with the partonic jet mass as determined by both PYTHIA-8 and a next-to-leading-logarithmic accuracy perturbative QCD calculation. These measurements complement recent LHC measurements in a different kinematic region, as well as establish a baseline for future jet mass measurements in heavy-ion collisions at RHIC.
In this letter, measurements of the shared momentum fraction ($z_{rm{g}}$) and the groomed jet radius ($R_{rm{g}}$), as defined in the SoftDrop algorihm, are reported in pp collisions at $sqrt{s} = 200$ GeV collected by the STAR experiment. These substructure observables are differentially measured for jets of varying resolution parameters from $R = 0.2 - 0.6$ in the transverse momentum range $15 < p_{rm{T, jet}} < 60$ GeV$/c$. These studies show that, in the $p_{rm{T, jet}}$ range accessible at $sqrt{s} = 200$ GeV and with increasing jet resolution parameter and jet transverse momentum, the $z_{rm{g}}$ distribution asymptotically converges to the DGLAP splitting kernel for a quark radiating a gluon. The groomed jet radius measurements reflect a momentum-dependent narrowing of the jet structure for jets of a given resolution parameter, i.e., the larger the $p_{rm{T, jet}}$, the narrower the first splitting. For the first time, these fully corrected measurements are compared to Monte Carlo generators with leading order QCD matrix elements and leading log in the parton shower, and to state-of-the-art theoretical calculations at next-to-leading-log accuracy. We observe that PYTHIA 6 with parameters tuned to reproduce RHIC measurements is able to quantitatively describe data, whereas PYTHIA 8 and HERWIG 7, tuned to reproduce LHC data, are unable to provide a simultaneous description of both $z_{rm{g}}$ and $R_{rm{g}}$, resulting in opportunities for fine parameter tuning of these models for pp collisions at RHIC energies. We also find that the theoretical calculations without non-perturbative corrections are able to qualitatively describe the trend in data for jets of large resolution parameters at high $p_{rm{T, jet}}$, but fail at small jet resolution parameters and low jet transverse momenta.
We report the first measurement of the longitudinal double-spin asymmetry $A_{LL}$ for mid-rapidity di-jet production in polarized $pp$ collisions at a center-of-mass energy of $sqrt{s} = 200$ GeV. The di-jet cross section was measured and is shown to be consistent with next-to-leading order (NLO) perturbative QCD predictions. $A_{LL}$ results are presented for two distinct topologies, defined by the jet pseudorapidities, and are compared to predictions from several recent NLO global analyses. The measured asymmetries, the first such correlation measurements, support those analyses that find positive gluon polarization at the level of roughly 0.2 over the region of Bjorken-$x > 0.05$.
We report on new measurements of inclusive J/$psi$ polarization at mid-rapidity in p+p collisions at $sqrt{s}$ = 200 GeV by the STAR experiment at RHIC. The polarization parameters, $lambda_theta$, $lambda_phi$, and $lambda_{thetaphi}$, are measured as a function of transverse momentum ($p_T$) in both the Helicity and Collins-Soper (CS) reference frames within $p_T< 10$ GeV/$C$. Except for $lambda_theta$ in the CS frame at the highest measured $p_T$, all three polarization parameters are consistent with 0 in both reference frames without any strong $p_T$ dependence. Several model calculations are compared with data, and the one using the Color Glass Condensate effective field theory coupled with non-relativistic QCD gives the best overall description of the experimental results, even though other models cannot be ruled out due to experimental uncertainties.
We report a new high-precision measurement of the mid-rapidity inclusive jet longitudinal double-spin asymmetry, $A_{LL}$, in polarized $pp$ collisions at center-of-mass energy $sqrt{s}=200$ GeV. The STAR data place stringent constraints on polarized parton distribution functions extracted at next-to-leading order from global analyses of inclusive deep inelastic scattering (DIS), semi-inclusive DIS, and RHIC $pp$ data. The measured asymmetries provide evidence for positive gluon polarization in the Bjorken-$x$ region $x>0.05$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا