No Arabic abstract
We report on new measurements of inclusive J/$psi$ polarization at mid-rapidity in p+p collisions at $sqrt{s}$ = 200 GeV by the STAR experiment at RHIC. The polarization parameters, $lambda_theta$, $lambda_phi$, and $lambda_{thetaphi}$, are measured as a function of transverse momentum ($p_T$) in both the Helicity and Collins-Soper (CS) reference frames within $p_T< 10$ GeV/$C$. Except for $lambda_theta$ in the CS frame at the highest measured $p_T$, all three polarization parameters are consistent with 0 in both reference frames without any strong $p_T$ dependence. Several model calculations are compared with data, and the one using the Color Glass Condensate effective field theory coupled with non-relativistic QCD gives the best overall description of the experimental results, even though other models cannot be ruled out due to experimental uncertainties.
In this paper, results on the J/psi cross section and polarization measured via the dielectron decay channel at mid-rapidity in p+p collisions at 200 and 500 GeV in the STAR experiment are discussed. Also, first measurements of the J/psi production as a function of the charged-particle multiplicity density and of psi(2S) to J/psi ratio at 500 GeV are reported.
We report on a polarization measurement of inclusive $J/psi$ mesons in the di-electron decay channel at mid-rapidity at 2 $<p_{T}<$ 6 GeV/$c$ in $p+p$ collisions at $sqrt{s}$ = 200 GeV. Data were taken with the STAR detector at RHIC. The $J/psi$ polarization measurement should help to distinguish between different models of the $J/psi$ production mechanism since they predict different $p_{T}$ dependences of the $J/psi$ polarization. In this analysis, $J/psi$ polarization is studied in the helicity frame. The polarization parameter $lambda_{theta}$ measured at RHIC becomes smaller towards high $p_{T}$, indicating more longitudinal $J/psi$ polarization as $p_{T}$ increases. The result is compared with predictions of presently available models.
The PHENIX experiment at the Relativistic Heavy Ion Collider has measured the differential cross section, mean transverse momentum, mean transverse momentum squared of inclusive $J/psi$ and cross-section ratio of $psi(2S)$ to $J/psi$ at forward rapidity in pp collisions at sqrts = 510 GeV via the dimuon decay channel. Comparison is made to inclusive $J/psi$ cross sections measured at sqrts = 200 GeV and 2.76--13 TeV. The result is also compared to leading-order nonrelativistic QCD calculations coupled to a color-glass-condensate description of the low-$x$ gluons in the proton at low transverse momentum ($p_T$) and to next-to-leading order nonrelativistic QCD calculations for the rest of the $p_T$ range. These calculations overestimate the data at low $p_T$. While consistent with the data within uncertainties above $approx3$ GeV/$c$, the calculations are systematically below the data. The total cross section times the branching ratio is BR $dsigma^{J/psi}_{pp}/dy (1.2<|y|<2.2, 0<p_T<10~mbox{GeV/$c$}) =$ 54.3 $pm$ 0.5 (stat) $pm$ 5.5 (syst) nb.
We report the double helicity asymmetry, $A_{LL}^{J/psi}$, in inclusive $J/psi$ production at forward rapidity as a function of transverse momentum $p_T$ and rapidity $|y|$. The data analyzed were taken during $sqrt{s}=510$ GeV longitudinally polarized $p$$+$$p$ collisions at the Relativistic Heavy Ion Collider (RHIC) in the 2013 run using the PHENIX detector. At this collision energy, $J/psi$ particles are predominantly produced through gluon-gluon scatterings, thus $A_{LL}^{J/psi}$ is sensitive to the gluon polarization inside the proton. We measured $A_{LL}^{J/psi}$ by detecting the decay daughter muon pairs $mu^+ mu^-$ within the PHENIX muon spectrometers in the rapidity range $1.2<|y|<2.2$. In this kinematic range, we measured the $A_{LL}^{J/psi}$ to be $0.012 pm 0.010$~(stat)~$pm$~$0.003$(syst). The $A_{LL}^{J/psi}$ can be expressed to be proportional to the product of the gluon polarization distributions at two distinct ranges of Bjorken $x$: one at moderate range $x approx 0.05$ where recent RHIC data of jet and $pi^0$ double helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one covering the poorly known small-$x$ region $x approx 2times 10^{-3}$. Thus our new results could be used to further constrain the gluon polarization for $x< 0.05$.
We present a measurement of inclusive $J/psi$ production at mid-rapidity ($|y|<1$) in $p+p$ collisions at a center-of-mass energy of $sqrt{s}$ = 200 GeV with the STAR experiment at the Relativistic Heavy Ion Collider (RHIC). The differential production cross section for $J/psi$ as a function of transverse momentum ($p_T$) for $0<p_T<14$ GeV/$c$ and the total cross section are reported and compared to calculations from the color evaporation model and the non-relativistic Quantum Chromodynamics model. The dependence of $J/psi$ relative yields in three $p_T$ intervals on charged-particle multiplicity at mid-rapidity is measured for the first time in $p+p$ collisions at $sqrt{s}$ = 200 GeV and compared with that measured at $sqrt{s}$ = 7 TeV, PYTHIA8 and EPOS3 Monte Carlo generators, and the Percolation model prediction.