Do you want to publish a course? Click here

On a Non-Newtonian Calculus of Variations

93   0   0.0 ( 0 )
 Added by Delfim F. M. Torres
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The calculus of variations is a field of mathematical analysis born in 1687 with Newtons problem of minimal resistance, which is concerned with the maxima or minima of integral functionals. Finding the solution of such problems leads to solving the associated Euler-Lagrange equations. The subject has found many applications over the centuries, e.g., in physics, economics, engineering and biology. Up to this moment, however, the theory of the calculus of variations has been confined to Newtons approach to calculus. As in many applications negative values of admissible functions are not physically plausible, we propose here to develop an alternative calculus of variations based on the non-Newtonian approach first introduced by Grossman and Katz in the period between 1967 and 1970, which provides a calculus defined, from the very beginning, for positive real numbers only, and it is based on a (non-Newtonian) derivative that permits one to compare relative changes between a dependent positive variable and an independent variable that is also positive. In this way, the non-Newtonian calculus of variations we introduce here provides a natural framework for problems involving functions with positive images. Our main result is a first-order optimality condition of Euler-Lagrange type. The new calculus of variations complements the standard one in a nontrivial/multiplicative way, guaranteeing that the solution remains in the physically admissible positive range. An illustrative example is given.



rate research

Read More

167 - Yong Lin , Yunyan Yang 2021
Let $G=(V,E)$ be a locally finite graph. Firstly, using calculus of variations, including a direct method of variation and the mountain-pass theory, we get sequences of solutions to several local equations on $G$ (the Schrodinger equation, the mean field equation, and the Yamabe equation). Secondly, we derive uniform estimates for those local solution sequences. Finally, we obtain global solutions by extracting convergent sequence of solutions. Our method can be described as a variational method from local to global.
115 - M.C. Nucci , A.M. Arthurs 2008
We show that given an ordinary differential equation of order four, it may be possible to determine a Lagrangian if the third derivative is absent (or eliminated) from the equation. This represents a subcase of Felsconditions [M. E. Fels, The inverse problem of the calculus of variations for scalar fourth-order ordinary differential equations, Trans. Amer. Math. Soc. 348 (1996) 5007-5029] which ensure the existence and uniqueness of the Lagrangian in the case of a fourth-order equation. The key is the Jacobi last multiplier as in the case of a second-order equation. Two equations from a Number Theory paper by Hall, one of second and one of fourth order, will be used to exemplify the method. The known link between Jacobi last multiplier and Lie symmetries is also exploited. Finally the Lagrangian of two fourth-order equations drawn from Physics are determined with the same method.
Many possible definitions have been proposed for fractional derivatives and integrals, starting from the classical Riemann-Liouville formula and its generalisations and modifying it by replacing the power function kernel with other kernel functions. We demonstrate, under some assumptions, how all of these modifications can be considered as special cases of a single, unifying, model of fractional calculus. We provide a fundamental connection with classical fractional calculus by writing these general fractional operators in terms of the original Riemann-Liouville fractional integral operator. We also consider inversion properties of the new operators, prove analogues of the Leibniz and chain rules in this model of fractional calculus, and solve some fractional differential equations using the new operators.
Several approaches to the formulation of a fractional theory of calculus of variable order have appeared in the literature over the years. Unfortunately, most of these proposals lack a rigorous mathematical framework. We consider an alternative view on the problem, originally proposed by G. Scarpi in the early seventies, based on a naive modification of the representation in the Laplace domain of standard kernels functions involved in (constant-order) fractional calculus. We frame Scarpis ideas within recent theory of General Fractional Derivatives and Integrals, that mostly rely on the Sonine condition, and investigate the main properties of the emerging variable-order operators. Then, taking advantage of powerful and easy-to-use numerical methods for the inversion of Laplace transforms of functions defined in the Laplace domain, we discuss some practical applications of the variable-order Scarpi integral and derivative.
108 - Paolo Giordano , Enxin Wu 2015
We develop the integral calculus for quasi-standard smooth functions defined on the ring of Fermat reals. The approach is by proving the existence and uniqueness of primitives. Besides the classical integral formulas, we show the flexibility of the Cartesian closed framework of Fermat spaces to deal with infinite dimensional integral operators. The total order relation between scalars permits to prove several classical order properties of these integrals and to study multiple integrals on Peano-Jordan-like integration domains.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا