Do you want to publish a course? Click here

Sub-Nyquist Sampling with Optical Pulses for Photonic Blind Source Separation

152   0   0.0 ( 0 )
 Added by Yang Qi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We proposed and demonstrated an optical pulse sampling method for photonic blind source separation. It can separate large bandwidth of mixed signals by small sampling frequency, which can reduce the workload of digital signal processing.



rate research

Read More

We propose and experimentally demonstrate an optical pulse sampling method for photonic blind source separation. The photonic system processes and separates wideband signals based on the statistical information of the mixed signals and thus the sampling frequency can be orders of magnitude lower than the bandwidth of the signals. The ultra-fast optical pulse functions as a tweezer that collects samples of the signals at very low sampling rates, and each sample is short enough to maintain the statistical properties of the signals. The low sampling frequency reduces the workloads of the analog to digital conversion and digital signal processing systems. In the meantime, the short pulse sampling maintains the accuracy of the sampled signals, so the statistical properties of the undersampling signals are the same as the statistical properties of the original signals. With the optical pulses generated from a mode-locked laser, the optical pulse sampling system is able to process and separate mixed signals with bandwidth over 100GHz and achieves a dynamic range of 30dB.
85 - Jehyuk Jang , Sanghun Im , 2017
A modulated wideband converter (MWC) has been introduced as a sub-Nyquist sampler that exploits a set of fast alternating pseudo random (PR) signals. Through parallel sampling branches, an MWC compresses a multiband spectrum by mixing it with PR signals in the time domain, and acquires its sub-Nyquist samples. Previously, the ratio of compression was fully dependent on the specifications of PR signals. That is, to further reduce the sampling rate without information loss, faster and longer-period PR signals were needed. However, the implementation of such PR signal generators results in high power consumption and large fabrication area. In this paper, we propose a novel aliased modulated wideband converter (AMWC), which can further reduce the sampling rate of MWC with fixed PR signals. The main idea is to induce intentional signal aliasing at the analog-to-digital converter (ADC). In addition to the first spectral compression by the signal mixer, the intentional aliasing compresses the mixed spectrum once again. We demonstrate that AMWC reduces the number of sampling branches and the rate of ADC for lossless sub-Nyquist sampling without needing to upgrade the speed or period of PR signals. Conversely, for a given fixed number of sampling branches and sampling rate, AMWC improves the performance of signal reconstruction.
91 - Jun Fang , Bin Wang , Hongbin Li 2021
Cognitive radio (CR) is a promising technology enabling efficient utilization of the spectrum resource for future wireless systems. As future CR networks are envisioned to operate over a wide frequency range, advanced wideband spectrum sensing (WBSS) capable of quickly and reliably detecting idle spectrum bands across a wide frequency span is essential. In this article, we provide an overview of recent advances on sub-Nyquist sampling-based WBSS techniques, including compressed sensing-based methods and compressive covariance sensing-based methods. An elaborate discussion of the pros and cons of each approach is presented, along with some challenging issues for future research. A comparative study suggests that the compressive covariance sensing-based approach offers a more competitive solution for reliable real-time WBSS.
113 - Chia-Hsiang Lin 2021
Terahertz (THz) technology has been a great candidate for applications, including pharmaceutic analysis, chemical identification, and remote sensing and imaging due to its non-invasive and non-destructive properties. Among those applications, penetrating-type hyperspectral THz signals, which provide crucial material information, normally involve a noisy, complex mixture system. Additionally, the measured THz signals could be ill-conditioned due to the overlap of the material absorption peak in the measured bands. To address those issues, we consider penetrating-type signal mixtures and aim to develop a textit{blind} hyperspectral unmixing (HU) method without requiring any information from a prebuilt database. The proposed HYperspectral Penetrating-type Ellipsoidal ReconstructION (HYPERION) algorithm is unsupervised, not relying on collecting extensive data or sophisticated model training. Instead, it is developed based on elegant ellipsoidal geometry under a very mild requirement on data purity, whose excellent efficacy is experimentally demonstrated.
Recently, several array radar structures combined with sub-Nyquist techniques and corresponding algorithms have been extensively studied. Carrier frequency and direction-of-arrival (DOA) estimations of multiple narrow-band signals received by array radars at the sub-Nyquist rates are considered in this paper. We propose a new sub-Nyquist array radar architecture (a binary array radar separately connected to a multi-coset structure with M branches) and an efficient joint estimation algorithm which can match frequencies up with corresponding DOAs. We further come up with a delay pattern augmenting method, by which the capability of the number of identifiable signals can increase from M-1 to Q-1 (Q is extended degrees of freedom). We further conclude that the minimum total sampling rate 2MB is sufficient to identify $ {K leq Q-1}$ narrow-band signals of maximum bandwidth $B$ inside. The effectiveness and performance of the estimation algorithm together with the augmenting method have been verified by simulations.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا