Do you want to publish a course? Click here

Mimetic Euler-Heisenberg theory, charged solutions and multi-horizon black holes

76   0   0.0 ( 0 )
 Added by Gamal G.L. Nashed
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We construct several new classes of black hole (BH) solutions in the context of the mimetic Euler-Heisenberg theory. We separately derive three differently charged BH solutions and their relevant mimetic forms. We show that the asymptotic form of all BH solutions behaves like a flat spacetime. These BHs, either with/without cosmological constant, have the non constant Ricci scalar, due to the contribution of the Euler-Heisenberg parameter, which means that they are not solution to standard or mimetic $f(R)$ gravitational theory without the Euler-Heisenberg non-linear electrodynamics and at the same time they are not equivalent to the solutions of the Einstein gravity with a massless scalar field. Moreover, we display that the effect of the Euler-Heisenberg theory makes the singularity of BH solutions stronger compared with that of BH solutions in general relativity. Furthermore, we show that the null and strong energy conditions of those BH solutions are violated, which is a general trend of mimetic gravitational theory. The thermodynamics of the BH solutions are satisfactory although there appears a negative Hawking temperature under some conditions. Additionally, these BHs obey the first law of thermodynamics. We also study the stability, using the geodesic deviation, and derive the stability condition analytically and graphically. Finally, for the first time and under some conditions, we derived multi-horizon BH solutions in the context of the mimetic Euler-Heisenberg theory and study their related physics.



rate research

Read More

We construct analytical and regular solutions in four-dimensional General Relativity which represent multi-black hole systems immersed in external gravitational field configurations. The external field background is composed by an infinite multipolar expansion, which allows to regularise the conical singularities of an array of collinear static black holes. A stationary rotating generalisation is achieved by adding independent angular momenta and NUT parameters to each source of the binary configuration. Moreover, a charged extension of the binary black hole system at equilibrium is generated. Finally, we show that the binary Majumdar-Papapetrou solution is consistently recovered in the vanishing external field limit. All of these solutions reach an equilibrium state due to the external gravitational field only, avoiding in this way the presence of any string or strut defect.
We present spontaneous scalarization of charged black holes (BHs) which is induced by the coupling of the scalar field to the electromagnetic field strength and the double-dual Riemann tensor $L^{mu ualphabeta}F_{mu u}F_{alphabeta}$ in a scalar-vector-tensor theory. In our model, the scalarization can be realized under the curved background with a non-trivial electromagnetic field, such as Reissner-Nordstr$ddot{rm o}$m Black Holes (RN BHs). Firstly, we investigate the stability of the constant scalar field around RN BHs in the model, and show that the scalar field can suffer a tachyonic instability. Secondly, the bound state solution of the test scalar field around a RN BH and its stability are discussed. Finally, we construct scalarized BH solutions, and investigate their stability.
We study static, spherically symmetric vacuum solutions to Quadratic Gravity, extending considerably our previous Rapid Communication [Phys. Rev. D 98, 021502(R) (2018)] on this topic. Using a conformal-to-Kundt metric ansatz, we arrive at a much simpler form of the field equations in comparison with their expression in the standard spherically symmetric coordinates. We present details of the derivation of this compact form of two ordinary differential field equations for two metric functions. Next, we apply analytical methods and express their solutions as infinite power series expansions. We systematically derive all possible cases admitted by such an ansatz, arriving at six main classes of solutions, and provide recurrent formulas for all the series coefficients. These results allow us to identify the classes containing the Schwarzschild black hole as a special case. It turns out that one class contains only the Schwarzschild black hole, three classes admit the Schwarzschild solution as a special subcase, and two classes are not compatible with the Schwarzschild solution at all since they have strictly nonzero Bach tensor. In our analysis, we naturally focus on the classes containing the Schwarzschild spacetime, in particular on a new family of the Schwarzschild-Bach black holes which possesses one additional non-Schwarzschild parameter corresponding to the value of the Bach tensor invariant on the horizon. We study its geometrical and physical properties, such as basic thermodynamical quantities and tidal effects on free test particles induced by the presence of the Bach tensor. We also compare our results with previous findings in the literature obtained using the standard spherically symmetric coordinates.
In this paper,we have studied phase transitions of higher dimensional charge black hole with spherical symmetry. we calculated the local energy and local temperature, and find that these state parameters satisfy the first law of thermodynamics. We analyze the critical behavior of black hole thermodynamic system by taking state parameters $(Q,Phi)$ of black hole thermodynamic system, in accordance with considering to the state parameters $(P,V)$ of Van der Waals system respectively. we obtain the critical point of black hole thermodynamic system, and find the critical point is independent of the dual independent variables we selected. This result for asymptotically flat space is consistent with that for AdS spacetime, and is intrinsic property of black hole thermodynamic system.
We obtain a perturbative solution for rotating charged black holes in 5-dimensional Einstein-Maxwell-Chern-Simons theory with a negative cosmological constant. We start from a small undeformed Kerr-AdS solution and use the electric charge as a perturbative parameter to build up black holes with equal-magnitude angular momenta up to forth order. These black hole solutions are described by three parameters, the charge, horizon radius and horizon angular velocity. We determine the physical quantities of these black holes and study their dependence on the parameters of black holes and arbitrary Chern-Simons coefficient. In particular, for values of CS coupling constant beyond its supergravity amount, due to a rotational instability, counterrotating black holes arise. Also the rotating solutions appear to have vanishing angular momenta and do not manifest uniquely by their global charges.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا