Do you want to publish a course? Click here

Spontaneous scalarization of charged black holes in the Scalar-Vector-Tensor theory

117   0   0.0 ( 0 )
 Added by Taishi Ikeda
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present spontaneous scalarization of charged black holes (BHs) which is induced by the coupling of the scalar field to the electromagnetic field strength and the double-dual Riemann tensor $L^{mu ualphabeta}F_{mu u}F_{alphabeta}$ in a scalar-vector-tensor theory. In our model, the scalarization can be realized under the curved background with a non-trivial electromagnetic field, such as Reissner-Nordstr$ddot{rm o}$m Black Holes (RN BHs). Firstly, we investigate the stability of the constant scalar field around RN BHs in the model, and show that the scalar field can suffer a tachyonic instability. Secondly, the bound state solution of the test scalar field around a RN BH and its stability are discussed. Finally, we construct scalarized BH solutions, and investigate their stability.



rate research

Read More

Spontaneous scalarization is a mechanism that endows relativistic stars and black holes with a nontrivial configuration only when their spacetime curvature exceeds some threshold. The standard way to trigger spontaneous scalarization is via a tachyonic instability at the linear level, which is eventually quenched due to the effect of non-linear terms. In this paper, we identify all of the terms in the Horndeski action that contribute to the (effective) mass term in the linearized equations and, hence, can cause or contribute to the tachyonic instability that triggers scalarization.
We study static, spherically symmetric and electrically charged black hole solutions in a quadratic Einstein-scalar-Gauss-Bonnet gravity model. Very similar to the uncharged case, black holes undergo spontaneous scalarization for sufficiently large scalar-tensor coupling $gamma$ - a phenomenon attributed to a tachyonic instability of the scalar field system. While in the uncharged case, this effect is only possible for positive values of $gamma$, we show that for sufficiently large values of the electric charge $Q$ two independent domains of existence in the $gamma$-$Q$-plane appear: one for positive $gamma$ and one for negative $gamma$. We demonstrate that this new domain for negative $gamma$ exists because of the fact that the near-horizon geometry of a nearly extremally charged black hole is $AdS_2times S^2$.This new domain appears for electric charges larger than approximately 74$%$ of the extremal charge. For positive $gamma$ we observe that a singularity with diverging curvature invariants forms outside the horizon when approaching extremality.
We investigate the possibility of spontaneous scalarization of static, spherically symmetric, and asymptotically flat black holes (BHs) in the Horndeski theory. Spontaneous scalarization of BHs is a phenomenon that the scalar field spontaneously obtains a nontrivial profile in the vicinity of the event horizon via the nonminimal couplings and eventually the BH possesses a scalar charge. In the theory in which spontaneous scalarization takes place, the Schwarzschild solution with a trivial profile of the scalar field exhibits a tachyonic instability in the vicinity of the event horizon, and evolves into a hairy BH solution. Our analysis will extend the previous studies about the Einstein-scalar-Gauss-Bonnet (GB) theory to other classes of the Horndeski theory. First, we clarify the conditions for the existence of the vanishing scalar field solution $phi=0$ on top of the Schwarzschild spacetime, and we apply them to each individual generalized galileon coupling. For each coupling, we choose the coupling function with minimal power of $phi$ and $X:=-(1/2)g^{mu u}partial_muphipartial_ uphi$ that satisfies the above condition, which leaves nonzero and finite imprints in the radial perturbation of the scalar field. Second, we investigate the radial perturbation of the scalar field about the $phi=0$ solution on top of the Schwarzschild spacetime. While each individual generalized galileon coupling except for a generalized quartic coupling does not satisfy the hyperbolicity condition or realize a tachyonic instability of the Schwarzschild spacetime by itself, a generalized quartic coupling can realize it in the intermediate length scales outside the event horizon. Finally, we investigate a model with generalized quartic and quintic galileon couplings, which includes the Einstein-scalar-GB theory as the special case.
197 - Hemza Azri , Salah Nasri 2020
Scalar-tensor theories of gravity are known to allow significant deviations from general relativity through various astrophysical phenomena. In this paper, we formulate a scalar-connection gravity by setting up scalars and connection configurations instead of metric. Since the matter sector is not straightforward to conceive without a metric, we invoke cosmological fluids in terms of their one-form velocity in the volume element of the invariant action. This leads to gravitational equations with a perfect fluid source and a generated metric, which are expected to produce reasonable deviations from general relativity in the strong-field regime. As a relevant application, we study spontaneous scalarization mechanism and show that the Damour-Esposito-Far`{e}se model arises in a certain class of scalar-connection gravity. Furthermore, we investigate a general study in which the present framework becomes distinguishable from the famed scalar-tensor theories.
In gravity theories that exhibit spontaneous scalarization, astrophysical objects are identical to their general relativistic counterpart until they reach a certain threshold in compactness or curvature. Beyond this threshold, they acquire a non-trivial scalar configuration, which also affects their structure. The onset of scalarization is controlled only by terms that contribute to linear perturbation around solutions of general relativity. The complete set of these terms has been identified for generalized scalar-tensor theories. Stepping on this result, we study the onset on scalarization in generalized scalar-tensor theories and determine the relevant thresholds in terms of the contributing coupling constants and the properties of the compact object.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا