No Arabic abstract
The PandaX-4T experiment, a four-ton scale dark matter direct detection experiment, is being planned at the China Jinping Underground Laboratory. In this paper we present a simulation study of the expected background in this experiment. In a 2.8-ton fiducial mass and the signal region between 1 to 10 keV electron equivalent energy, the total electron recoil background is found to be 4.9x10^{-5} /(kg day keV). The nuclear recoil background in the same region is 2.8x10^{-7}/(kg day keV). With an exposure of 5.6 ton-years, the sensitivity of PandaX-4T could reach a minimum spin-independent dark matter-nucleon cross section of 6x10^{-48} cm^{2} at a dark matter mass of 40 GeV/c^{2}.
We report the first dark matter search results using the commissioning data from PandaX-4T. Using a time projection chamber with 3.7-tonne of liquid xenon target and an exposure of 0.63~tonne$cdot$year, 1058 candidate events are identified within an approximate electron equivalent energy window between 1 and 30 keV. No significant excess over background is observed. Our data set a stringent limit to the dark matter-nucleon spin-independent interactions, with a lowest excluded cross section (90% C.L.) of $3.3times10^{-47} $cm$^2$ at a dark matter mass of 30 GeV/$c^2$.
The DAMIC experiment uses fully depleted, high resistivity CCDs to search for dark matter particles. With an energy threshold $sim$50 eV$_{ee}$, and excellent energy and spatial resolutions, the DAMIC CCDs are well-suited to identify and suppress radioactive backgrounds, having an unrivaled sensitivity to WIMPs with masses $<$6 GeV/$c^2$. Early results motivated the construction of a 100 g detector, DAMIC100, currently being installed at SNOLAB. This contribution discusses the installation progress, new calibration efforts near the threshold, a preliminary result with 2014 data, and the prospects for physics results after one year of data taking.
PandaX-4T is a dark matter direct detection experiment located in China jinping underground laboratory. The central apparatus is a dual-phase xenon detector containing 4 ton liquid xenon in the sensitive volume, with about 500 photomultipliers instrumented in the top and the bottom of the detector. In this paper we present a completely new system of readout electronics and data acquisition in the PandaX-4T experiment. Compared to the one used in the previous PandaX dark matter experiments, the new system features triggerless readout and higher bandwidth. With triggerless readout, dark matter searches are not affected by the efficiency loss of external triggers. The system records single photelectron signals of the dominant PMTs with an average efficiency of 96%, and achieves the bandwidth of more than 450 MB/s. The system has been used to successfully acquire data during the commissioning runs of PandaX-4T.
PandaX is a large upgradable liquid-xenon detector system that can be used for both direct dark-matter detection and $^{136}$Xe double-beta decay search. It is located in the Jinping Deep-Underground Laboratory in Sichuan, China. The detector operates in dual-phase mode, allowing detection of both prompt scintillation, and ionization charge through proportional scintillation. The central time projection chamber will be staged, with the first stage accommodating a target mass of about 120,kg. In stage II, the target mass will be increased to about 0.5,ton. In the final stage, the detector can be upgraded to a multi-ton target mass. In this paper a detailed description of the stage-I detector design and performance results established during the commissioning phase is presented.
XENONnT is a dark matter direct detection experiment, utilizing 5.9 t of instrumented liquid xenon, located at the INFN Laboratori Nazionali del Gran Sasso. In this work, we predict the experimental background and project the sensitivity of XENONnT to the detection of weakly interacting massive particles (WIMPs). The expected average differential background rate in the energy region of interest, corresponding to (1, 13) keV and (4, 50) keV for electronic and nuclear recoils, amounts to $12.3 pm 0.6$ (keV t y)$^{-1}$ and $(2.2pm 0.5)times 10^{-3}$ (keV t y)$^{-1}$, respectively, in a 4 t fiducial mass. We compute unified confidence intervals using the profile construction method, in order to ensure proper coverage. With the exposure goal of 20 t$,$y, the expected sensitivity to spin-independent WIMP-nucleon interactions reaches a cross-section of $1.4times10^{-48}$ cm$^2$ for a 50 GeV/c$^2$ mass WIMP at 90% confidence level, more than one order of magnitude beyond the current best limit, set by XENON1T. In addition, we show that for a 50 GeV/c$^2$ WIMP with cross-sections above $2.6times10^{-48}$ cm$^2$ ($5.0times10^{-48}$ cm$^2$) the median XENONnT discovery significance exceeds 3$sigma$ (5$sigma$). The expected sensitivity to the spin-dependent WIMP coupling to neutrons (protons) reaches $2.2times10^{-43}$ cm$^2$ ($6.0times10^{-42}$ cm$^2$).