We reexamine the Israel-type proof of the uniqueness theorem of the static spacetime outside the photon surface in the Einstein-conformal scalar system. We derive in a systematic fashion a new divergence identity which plays a key role in the proof. Our divergence identity includes three parameters, allowing us to give a new proof of the uniqueness.
We discuss the uniqueness of asymptotically flat and static spacetimes in the $n$-dimensional Einstein-conformal scalar system. This theory potentially has a singular point in the field equations where the effective Newton constant diverges. We will show that the static spacetime with the conformal scalar field outside a certain surface $S_p$ associated with the singular point is unique.
We study spherically symmetric soliton solutions in a model with a conformally coupled scalar field as well as in full conformal gravity. We observe that a new type of limiting behaviour appears for particular choices of the self-coupling of the scalar field, i.e. the solitons interpolate smoothly between the Anti-de Sitter vacuum and an uncharged configuration. Furthermore, within conformal gravity the qualitative approach of a limiting solution does not change when varying the charge of the scalar field - contrary to the Einstein-Hilbert case. However, it changes with the scalar self-coupling.
Conformally compactified (3+1)-dimensional Minkowski spacetime may be identified with the projective light cone in (4+2)-dimensional spacetime. In the latter spacetime the special conformal group acts via rotations and boosts, and conformal inversion acts via reflection in a single coordinate. Hexaspherical coordinates facilitate dimensional reduction of Maxwell electromagnetic field strength tensors to (3+1) from (4 + 2) dimensions. Here we focus on the operation of conformal inversion in different coordinatizations, and write some useful equations. We then write a conformal invariant and a pseudo-invariant in terms of field strengths; the pseudo-invariant in (4+2) dimensions takes a new form. Our results advance the study of general nonlinear conformal-invariant electrodynamics based on nonlinear constitutive equations.
We make use of the conformal compactification of Minkowski spacetime $M^{#}$ to explore a way of describing general, nonlinear Maxwell fields with conformal symmetry. We distinguish the inverse Minkowski spacetime $[M^{#}]^{-1}$ obtained via conformal inversion, so as to discuss a doubled compactified spacetime on which Maxwell fields may be defined. Identifying $M^{#}$ with the projective light cone in $(4+2)$-dimensional spacetime, we write two independent conformal-invariant functionals of the $6$-dimensional Maxwellian field strength tensors -- one bilinear, the other trilinear in the field strengths -- which are to enter general nonlinear constitutive equations. We also make some remarks regarding the dimensional reduction procedure as we consider its generalization from linear to general nonlinear theories.
The problem of maintaining scale and conformal invariance in Maxwell and general N-form gauge theories away from their critical dimension d=2(N+1) is analyzed.We first exhibit the underlying group-theoretical clash between locality,gauge,Lorentz and conformal invariance require- ments. Improved traceless stress tensors are then constructed;each violates one of the above criteria.However,when d=N+2,there is a duality equivalence between N-form models and massless scalars.Here we show that conformal invariance is not lost,by constructing a quasilocal gauge invariant improved stress tensor.The correlators of the scalar theory are then reproduced,including the latters trace anomaly.