Do you want to publish a course? Click here

Finding Failures in High-Fidelity Simulation using Adaptive Stress Testing and the Backward Algorithm

60   0   0.0 ( 0 )
 Added by Mark Koren
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Validating the safety of autonomous systems generally requires the use of high-fidelity simulators that adequately capture the variability of real-world scenarios. However, it is generally not feasible to exhaustively search the space of simulation scenarios for failures. Adaptive stress testing (AST) is a method that uses reinforcement learning to find the most likely failure of a system. AST with a deep reinforcement learning solver has been shown to be effective in finding failures across a range of different systems. This approach generally involves running many simulations, which can be very expensive when using a high-fidelity simulator. To improve efficiency, we present a method that first finds failures in a low-fidelity simulator. It then uses the backward algorithm, which trains a deep neural network policy using a single expert demonstration, to adapt the low-fidelity failures to high-fidelity. We have created a series of autonomous vehicle validation case studies that represent some of the ways low-fidelity and high-fidelity simulators can differ, such as time discretization. We demonstrate in a variety of case studies that this new AST approach is able to find failures with significantly fewer high-fidelity simulation steps than are needed when just running AST directly in high-fidelity. As a proof of concept, we also demonstrate AST on NVIDIAs DriveSim simulator, an industry state-of-the-art high-fidelity simulator for finding failures in autonomous vehicles.

rate research

Read More

Automated Vehicles require exhaustive testing in simulation to detect as many safety-critical failures as possible before deployment on public roads. In this work, we focus on the core decision-making component of autonomous robots: their planning algorithm. We introduce a planner testing framework that leverages recent progress in simulating behaviorally diverse traffic participants. Using large scale search, we generate, detect, and characterize dynamic scenarios leading to collisions. In particular, we propose methods to distinguish between unavoidable and avoidable accidents, focusing especially on automatically finding planner-specific defects that must be corrected before deployment. Through experiments in complex multi-agent intersection scenarios, we show that our method can indeed find a wide range of critical planner failures.
In the slice Hardy space over the unit ball of quaternions, we introduce the slice hyperbolic backward shift operators $mathcal S_a$ based on the identity $$f=e_alangle f, e_arangle+B_{a}*mathcal S_a f,$$ where $e_a$ denotes the slice normalized Szego kernel and $ B_a $ the slice Mobius transformation. By iterating the identity above, the greedy algorithm gives rise to the slice adaptive Fourier decomposition via maximum selection principle. This leads to the slice Takenaka-Malmquist orthonormal system.
154 - Jianguo Chen , Philip S. Yu 2019
As one type of efficient unsupervised learning methods, clustering algorithms have been widely used in data mining and knowledge discovery with noticeable advantages. However, clustering algorithms based on density peak have limited clustering effect on data with varying density distribution (VDD), equilibrium distribution (ED), and multiple domain-density maximums (MDDM), leading to the problems of sparse cluster loss and cluster fragmentation. To address these problems, we propose a Domain-Adaptive Density Clustering (DADC) algorithm, which consists of three steps: domain-adaptive density measurement, cluster center self-identification, and cluster self-ensemble. For data with VDD features, clusters in sparse regions are often neglected by using uniform density peak thresholds, which results in the loss of sparse clusters. We define a domain-adaptive density measurement method based on K-Nearest Neighbors (KNN) to adaptively detect the density peaks of different density regions. We treat each data point and its KNN neighborhood as a subgroup to better reflect its density distribution in a domain view. In addition, for data with ED or MDDM features, a large number of density peaks with similar values can be identified, which results in cluster fragmentation. We propose a cluster center self-identification and cluster self-ensemble method to automatically extract the initial cluster centers and merge the fragmented clusters. Experimental results demonstrate that compared with other comparative algorithms, the proposed DADC algorithm can obtain more reasonable clustering results on data with VDD, ED and MDDM features. Benefitting from a few parameter requirements and non-iterative nature, DADC achieves low computational complexity and is suitable for large-scale data clustering.
Machine learning models for medical image analysis often suffer from poor performance on important subsets of a population that are not identified during training or testing. For example, overall performance of a cancer detection model may be high, but the model still consistently misses a rare but aggressive cancer subtype. We refer to this problem as hidden stratification, and observe that it results from incompletely describing the meaningful variation in a dataset. While hidden stratification can substantially reduce the clinical efficacy of machine learning models, its effects remain difficult to measure. In this work, we assess the utility of several possible techniques for measuring and describing hidden stratification effects, and characterize these effects on multiple medical imaging datasets. We find evidence that hidden stratification can occur in unidentified imaging subsets with low prevalence, low label quality, subtle distinguishing features, or spurious correlates, and that it can result in relative performance differences of over 20% on clinically important subsets. Finally, we explore the clinical implications of our findings, and suggest that evaluation of hidden stratification should be a critical component of any machine learning deployment in medical imaging.
We collaborate with a large teaching hospital in Shenzhen, China and build a high-fidelity simulation model for its ultrasound center to predict key performance metrics, including the distributions of queue length, waiting time and sojourn time, with high accuracy. The key challenge to build an accurate simulation model is to understanding the complicated patient routing at the ultrasound center. To address the issue, we propose a novel two-level routing component to the queueing network model. We apply machine learning tools to calibrate the key components of the queueing model from data with enhanced accuracy.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا