Do you want to publish a course? Click here

A High-fidelity, Machine-learning Enhanced Queueing Network Simulation Model for Hospital Ultrasound Operations

92   0   0.0 ( 0 )
 Added by Zhenghang Xu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We collaborate with a large teaching hospital in Shenzhen, China and build a high-fidelity simulation model for its ultrasound center to predict key performance metrics, including the distributions of queue length, waiting time and sojourn time, with high accuracy. The key challenge to build an accurate simulation model is to understanding the complicated patient routing at the ultrasound center. To address the issue, we propose a novel two-level routing component to the queueing network model. We apply machine learning tools to calibrate the key components of the queueing model from data with enhanced accuracy.

rate research

Read More

246 - Jer^ome Bolte 2021
In view of training increasingly complex learning architectures, we establish a nonsmooth implicit function theorem with an operational calculus. Our result applies to most practical problems (i.e., definable problems) provided that a nonsmooth form of the classical invertibility condition is fulfilled. This approach allows for formal subdifferentiation: for instance, replacing derivatives by Clarke Jacobians in the usual differentiation formulas is fully justified for a wide class of nonsmooth problems. Moreover this calculus is entirely compatible with algorithmic differentiation (e.g., backpropagation). We provide several applications such as training deep equilibrium networks, training neural nets with conic optimization layers, or hyperparameter-tuning for nonsmooth Lasso-type models. To show the sharpness of our assumptions, we present numerical experiments showcasing the extremely pathological gradient dynamics one can encounter when applying implicit algorithmic differentiation without any hypothesis.
We present Ecole, a new library to simplify machine learning research for combinatorial optimization. Ecole exposes several key decision tasks arising in general-purpose combinatorial optimization solvers as control problems over Markov decision processes. Its interface mimics the popular OpenAI Gym library and is both extensible and intuitive to use. We aim at making this library a standardized platform that will lower the bar of entry and accelerate innovation in the field. Documentation and code can be found at https://www.ecole.ai.
102 - Kaiyi Ji 2021
Bilevel optimization has become a powerful framework in various machine learning applications including meta-learning, hyperparameter optimization, and network architecture search. There are generally two classes of bilevel optimization formulations for machine learning: 1) problem-based bilevel optimization, whose inner-level problem is formulated as finding a minimizer of a given loss function; and 2) algorithm-based bilevel optimization, whose inner-level solution is an output of a fixed algorithm. For the first class, two popular types of gradient-based algorithms have been proposed for hypergradient estimation via approximate implicit differentiation (AID) and iterative differentiation (ITD). Algorithms for the second class include the popular model-agnostic meta-learning (MAML) and almost no inner loop (ANIL). However, the convergence rate and fundamental limitations of bilevel optimization algorithms have not been well explored. This thesis provides a comprehensive convergence rate analysis for bilevel algorithms in the aforementioned two classes. We further propose principled algorithm designs for bilevel optimization with higher efficiency and scalability. For the problem-based formulation, we provide a convergence rate analysis for AID- and ITD-based bilevel algorithms. We then develop acceleration bilevel algorithms, for which we provide shaper convergence analysis with relaxed assumptions. We also provide the first lower bounds for bilevel optimization, and establish the optimality by providing matching upper bounds under certain conditions. We finally propose new stochastic bilevel optimization algorithms with lower complexity and higher efficiency in practice. For the algorithm-based formulation, we develop a theoretical convergence for general multi-step MAML and ANIL, and characterize the impact of parameter selections and loss geometries on the their complexities.
We present a novel adaptive optimization algorithm for large-scale machine learning problems. Equipped with a low-cost estimate of local curvature and Lipschitz smoothness, our method dynamically adapts the search direction and step-size. The search direction contains gradient information preconditioned by a well-scaled diagonal preconditioning matrix that captures the local curvature information. Our methodology does not require the tedious task of learning rate tuning, as the learning rate is updated automatically without adding an extra hyperparameter. We provide convergence guarantees on a comprehensive collection of optimization problems, including convex, strongly convex, and nonconvex problems, in both deterministic and stochastic regimes. We also conduct an extensive empirical evaluation on standard machine learning problems, justifying our algorithms versatility and demonstrating its strong performance compared to other start-of-the-art first-order and second-order methods.
95 - Haotian Gu , Xin Guo , Xiaoli Wei 2021
One of the challenges for multi-agent reinforcement learning (MARL) is designing efficient learning algorithms for a large system in which each agent has only limited or partial information of the entire system. In this system, it is desirable to learn policies of a decentralized type. A recent and promising paradigm to analyze such decentralized MARL is to take network structures into consideration. While exciting progress has been made to analyze decentralized MARL with the network of agents, often found in social networks and team video games, little is known theoretically for decentralized MARL with the network of states, frequently used for modeling self-driving vehicles, ride-sharing, and data and traffic routing. This paper proposes a framework called localized training and decentralized execution to study MARL with network of states, with homogeneous (a.k.a. mean-field type) agents. Localized training means that agents only need to collect local information in their neighboring states during the training phase; decentralized execution implies that, after the training stage, agents can execute the learned decentralized policies, which only requires knowledge of the agents current states. The key idea is to utilize the homogeneity of agents and regroup them according to their states, thus the formulation of a networked Markov decision process with teams of agents, enabling the update of the Q-function in a localized fashion. In order to design an efficient and scalable reinforcement learning algorithm under such a framework, we adopt the actor-critic approach with over-parameterized neural networks, and establish the convergence and sample complexity for our algorithm, shown to be scalable with respect to the size of both agents and states.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا