Do you want to publish a course? Click here

Combinatorial classification of $(pm 1)$-skew projective spaces

81   0   0.0 ( 0 )
 Added by Kenta Ueyama
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

The noncommutative projective scheme $operatorname{mathsf{Proj_{nc}}} S$ of a $(pm 1)$-skew polynomial algebra $S$ in $n$ variables is considered to be a $(pm 1)$-skew projective space of dimension $n-1$. In this paper, using combinatorial methods, we give a classification theorem for $(pm 1)$-skew projective spaces. Specifically, among other equivalences, we prove that $(pm 1)$-skew projective spaces $operatorname{mathsf{Proj_{nc}}} S$ and $operatorname{mathsf{Proj_{nc}}} S$ are isomorphic if and only if certain graphs associated to $S$ and $S$ are switching (or mutation) equivalent. We also discuss invariants of $(pm 1)$-skew projective spaces from a combinatorial point of view.



rate research

Read More

173 - C. A. Rossi 2007
We investigate (twisted) rings of differential operators on the resolution of singularities of a particular irreducible component of the (Zarisky) closure of the minimal orbit $bar O_{mathrm{min}}$ of $mathfrak{sp}_{2n}$, intersected with the Borel subalgebra $mathfrak n_+$ of $mathfrak{sp}_{2n}$, using toric geometry and show that they are homomorphic images of a subalgebra of the Universal Enveloping Algebra (UEA) of $mathfrak{sp}_{2n}$, which contains the maximal parabolic subalgebra $mathfrak p$ determining the minimal nilpotent orbit. Further, using Fourier transforms on Weyl algebras, we show that (twisted) rings of well-suited weighted projective spaces are obtained from the same subalgebra. Finally, investigating this subalgebra from the representation-theoretical point of view, we find new primitive ideals and rediscover old ones for the UEA of $mathfrak{sp}_{2n}$ coming from the aforementioned resolution of singularities.
240 - Nathan Bowler , Ting Su 2020
A hypergroup is stringent if $a boxplus b$ is a singleton whenever $a eq -b$. A hyperfield is stringent if the underlying additive hypergroup is. Every doubly distributive skew hyperfield is stringent, but not vice versa. We present a classification of stringent hypergroups, from which a classification of doubly distributive skew hyperfields follows. It follows from our classification that every such hyperfield is a quotient of a skew field.
The goal of this paper is to explicitly detect all the arithmetic genera of arithmetically Cohen-Macaulay projective curves with a given degree $d$. It is well-known that the arithmetic genus $g$ of a curve $C$ can be easily deduced from the $h$-vector of the curve; in the case where $C$ is arithmetically Cohen-Macaulay of degree $d$, $g$ must belong to the range of integers $big{0,ldots,binom{d-1}{2}big}$. We develop an algorithmic procedure that allows one to avoid constructing most of the possible $h$-vectors of $C$. The essential tools are a combinatorial description of the finite O-sequences of multiplicity $d$, and a sort of continuity result regarding the generation of the genera. The efficiency of our method is supported by computational evidence. As a consequence, we single out the minimal possible Castelnuovo-Mumford regularity of a curve with Cohen-Macaulay postulation and given degree and genus.
We give a geometric classification of complex $n$-dimensional $2$-step nilpotent (all, commutative and anticommutative) algebras. Namely, has been found the number of irreducible components and their dimensions. As a corollary, we have a geometric classification of complex $5$-dimensional nilpotent associative algebras. In particular, it has been proven that this variety has $14$ irreducible components and $9$ rigid algebras.
171 - Koen Thas 2016
In this essay we study various notions of projective space (and other schemes) over $mathbb{F}_{1^ell}$, with $mathbb{F}_1$ denoting the field with one element. Our leading motivation is the Hiden Points Principle, which shows a huge deviation between the set of rational points as closed points defined over $mathbb{F}_{1^ell}$, and the set of rational points defined as morphisms $texttt{Spec}(mathbb{F}_{1^ell}) mapsto mathcal{X}$. We also introduce, in the same vein as Kurokawa [13], schemes of $mathbb{F}_{1^ell}$-type, and consider their zeta functions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا