Do you want to publish a course? Click here

The geometric classification of $2$-step nilpotent algebras and applications

94   0   0.0 ( 0 )
 Added by Ivan Kaygorodov
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We give a geometric classification of complex $n$-dimensional $2$-step nilpotent (all, commutative and anticommutative) algebras. Namely, has been found the number of irreducible components and their dimensions. As a corollary, we have a geometric classification of complex $5$-dimensional nilpotent associative algebras. In particular, it has been proven that this variety has $14$ irreducible components and $9$ rigid algebras.



rate research

Read More

We investigate Lie algebras whose Lie bracket is also an associative or cubic associative multiplication to characterize the class of nilpotent Lie algebras with a nilindex equal to 2 or 3. In particular we study the class of 2-step nilpotent Lie algebras, their deformations and we compute the cohomology which parametrize the deformations in this class.
We present algebraic and geometric classifications of the $4$-dimensional complex nilpotent right alternative algebras. Specifically, we find that, up to isomorphism, there are only $9$ non-isomorphic nontrivial nilpotent right alternative algebras. The corresponding geometric variety has dimension $13$ and it is determined by the Zariski closure of $4$ rigid algebras and one one-parametric family of algebras.
The classification of complex of real finite dimensional Lie algebras which are not semi simple is still in its early stages. For example the nilpotent Lie algebras are classified only up to the dimension 7. Moreover, to recognize a given Lie algebra in a classification list is not so easy. In this work we propose a different approach to this problem. We determine families for some fixed invariants, the classification follows by a deformation process or contraction process. We focus on the case of 2 and 3-step nilpotent Lie algebras. We describe in both cases a deformation cohomology of this type of algebras and the algebras which are rigid regarding this cohomology. Other $p$-step nilpotent Lie algebras are obtained by contraction of the rigid ones.
We give the complete algebraic classification of all complex 4-dimensional nilpotent algebras. The final list has 234 (parametric families of) isomorphism classes of algebras, 66 of which are new in the literature.
In this paper we investigate the derivations of filiform Leibniz algebras. Recall that the set of filiform Leibniz algebras of fixed dimension is decomposed into three non-intersected families. We found sufficient conditions under which filiform Leibniz algebras of the first family are characteristically nilpotent. Moreover, for the first family we classify non-characteristically nilpotent algebras by means of Catalan numbers. In addition, for the rest two families of filiform Leibniz algebras we describe non-characteristically nilpotent algebras, i.e., those filiform Leibniz algebras which lie in the complementary set to those characteristically nilpotent.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا