Do you want to publish a course? Click here

Tuning the critical Li intercalation concentrations for MoX$_2$ bilayer phase transitions

58   0   0.0 ( 0 )
 Added by Catalin D. Spataru
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition metal dichalcogenides (TMDs), such as MoS$_2$, are known to undergo a structural phase transformation as well as a change in the electronic conductivity upon Li intercalation. These properties make them candidates for charge-tunable ion-insertion materials that could be used in electro-chemical devices. In this work we study the phase stability and electronic structure of H and T$^prime$ Li-intercalated MoX$_2$ bilayers with X=S, Se, or Te. Using first-principles calculations in combination with classical and machine learning modeling approaches, we find that the H phase is more stable at low Li concentration for all X, and the critical Li concentration at which the T$^primeto$H transition occurs decreases with increasing mass of X. Furthermore the relative free energy of the two phases becomes less sensitive to Li insertion with increasing atomic mass of the chalcogen atom X. While the electronic conductivity increases with increasing ion concentration at low concentrations, we do not observe a (positive) conductivity jump at the phase transition from H to T$^prime$.



rate research

Read More

We use first-principles calculation within the density functional theory (DFT) to explore the electronic properties on stage-1 Li- and Li+-graphite-intercalation compounds (GIC) for different concentrations, LiCx/Li+Cx with x= 6,12,18,24,32 and 36. The essential properties, e.g. geometric structures, band structures and spatial charge distributions are determined by the hybridization of orbitals, the main focus of our works. The band structures/density of states/spatial charge distribution display that the Li-GIC possesses blue shift of fermi energy and just like metals, but the Li+-GIC still preserves as original graphite or so-call semimetal possessing the same densities of free electrons and holes. According to these properties, we find that there exists weak but significant van der Waals interactions between interlayer of graphite, and 2s-2pz hybridization between Li and C. There scarcely exists strong interactions between Li+-C. The dominant interaction between the Li and C is 2s-2pz orbital-orbital couple; the orbital-orbital couple is not significant in Li+ and C case but the dipole-diploe couple.
The essential properties of graphite-based 3D systems are thoroughly investigated by the first-principles method. Such materials cover a simple hexagonal graphite, a Bernal graphite, and the stage-1 to stage-4 Li/Li$^+$ graphite intercalation compounds. The delicate calculations and the detailed analyses are done for their optimal stacking configurations, bong lengths, interlayer distances, free electron $&$ hole densities, Fermi levels, transferred charges in chemical bondings, atom- or ion-dominated energy bands, spatial charge distributions and the significant variations after intercalation, Li-/Li$^+$- $&$ C-orbital-decomposed DOSs. The above-mentioned physical quantities are sufficient in determining the critical orbital hybridizations responsible for the unusual fundamental properties. How to dramatically alter the low-lying electronic structures by modulating the quest-atom/quest-ion concentration is one of focuses, e.g., the drastic changes on the Fermi level, band widths, and number of energy bands. The theoretical predictions on the stage-n-dependent band structures could be examined by the high-resolution angle-resolved photoemission spectroscopy (ARPES). Most important, the low-energy DOSs near the Fermi might provide the reliable data for estimating the free carrier density due to the interlayer atomic interactions or the quest-atom/quest-ion intercalation. The van Hove singularities, which mainly arise from the critical points in energy-wave-vector space, could be directly examined by the experimental measurements of scanning tunneling spectroscopy (STS). Their features should be very useful in distinguishing the important differences among the stage-$n$ graphite intercalation compounds, and the distinct effects due to the atom or ion decoration.
The influence of random interlayer exchange on the phase states of the simplest magnetic heterostructure consisting of two ferromagnetic Ising layers with large interaction radius is studied. It is shown that such system can exist in three magnetic phases: ferromagnetic, antiferromagnetic and ferrimagnetic. The possible phase diagrams and temperature dependencies of thermodynamic parameters are described. The regions of existence of the magnetic phases in external magnetic field are determined at zero temperature.
Grain boundary migration is driven by the boundarys curvature and external loads such as temperature and stress. In intercalation electrodes an additional driving force results from Li-diffusion. That is, Li-intercalation induces volume expansion of the host-electrode, which is stored as elastic energy in the system. This stored energy is hypothesized as an additional driving force for grain boundaries and edge dislocations. Here, we apply the 2D Cahn-Hilliard$-$phase-field-crystal (CH-PFC) model to investigate the coupled interactions between highly mobile Li-ions and host-electrode lattice structure, during an electrochemical cycle. We use a polycrystalline FePO$_{4}$/ LiFePO$_{4}$ electrode particle as a model system. We compute grain growth in the FePO$_{4}$ electrode in two parallel studies: In the first study, we electrochemically cycle the electrode and calculate Li-diffusion assisted grain growth. In the second study, we do not cycle the electrode and calculate the curvature-driven grain growth. External loads, such as temperature and stress, did not differ across studies. We find the mean grain-size increases by $sim11%$ in the electrochemically cycled electrode particle. By contrast, in the absence of electrochemical cycling, we find the mean grain-size increases by $sim2%$ in the electrode particle. These CH-PFC computations suggest that Li-intercalation accelerates grain-boundary migration in the host-electrode particle. The CH-PFC simulations provide atomistic insights on diffusion-induced grain-boundary migration, edge dislocation movement and triple-junction drag-effect in the host-electrode microstructure.
100 - Yu Guo , Nanshu Liu , Yanyan Zhao 2020
Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI3 is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose a general strategy of self-intercalation to achieve enhanced ferromagnetism in bilayer CrI3. We showed that filling either Cr or I atoms into the van der Waals gap of stacked and twisted CrI3 bilayers can induce the double exchange effect and significantly strengthen the interlayer ferromagnetic coupling. According to our first-principles calculations, the intercalated native atoms act as covalent bridge between two CrI3 layers and lead to discrepant oxidation states for the Cr atoms. These theoretical results offer a facile route to achieve high-Curie-temperature 2D magnets for device implementation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا