Do you want to publish a course? Click here

Enhanced Ferromagnetism of CrI3 Bilayer by Self-Intercalation

101   0   0.0 ( 0 )
 Added by Si Zhou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two-dimensional (2D) ferromagnets with high Curie temperature have long been the pursuit for electronic and spintronic applications. CrI3 is a rising star of intrinsic 2D ferromagnets, however, it suffers from weak exchange coupling. Here we propose a general strategy of self-intercalation to achieve enhanced ferromagnetism in bilayer CrI3. We showed that filling either Cr or I atoms into the van der Waals gap of stacked and twisted CrI3 bilayers can induce the double exchange effect and significantly strengthen the interlayer ferromagnetic coupling. According to our first-principles calculations, the intercalated native atoms act as covalent bridge between two CrI3 layers and lead to discrepant oxidation states for the Cr atoms. These theoretical results offer a facile route to achieve high-Curie-temperature 2D magnets for device implementation.



rate research

Read More

108 - Nanshu Liu , Si Zhou , Jijun Zhao 2020
Two-dimensional (2D) ferromagnetic (FM) semiconductors with high Curie temperature have long been pursued for electronic and spintronic applications. Here we provide a general strategy to achieve robust FM state in bilayer CrI3 of the monoclinic stacking, which intrinsically has interlayer antiferromagnetic (AFM) order and weak in-plane FM coupling. We showed that the proximity effect from bulk semiconducting substrates induces electronic doping and significantly increases the FM nearest-neighbor exchange for bilayer CrI3, leading to the AFM-to-FM transition for the interlayer spin configuration as well as enhanced intralayer FM coupling. By first-principles calculations and Monte Carlo simulations, bulk and 2D semiconductors providing different interaction strengths from strong covalent bonding to weak van der Waals (vdW) interaction with CrI3 are compared to thoroughly address the substrate effect on magnetic behavior and Curie temperature of bilayer CrI3. These theoretical results offer a facile route for direct synthesis of 2D ferromagnets on proper semiconducting substrates to achieve high Curie temperature for device implementation.
Diverse interlayer tunability of physical properties of two-dimensional layers mostly lies in the covalent-like quasi-bonding that is significant in electronic structures but rather weak for energetics. Such characteristics result in various stacking orders that are energetically comparable but may significantly differ in terms of electronic structures, e.g. magnetism. Inspired by several recent experiments showing interlayer anti-ferromagnetically coupled CrI3 bilayers, we carried out first-principles calculations for CrI3 bilayers. We found that the anti-ferromagnetic coupling results from a new stacking order with the C2/m space group symmetry, rather than the graphene-like one with R3 as previously believed. Moreover, we demonstrated that the intra- and inter-layer couplings in CrI3 bilayer are governed by two different mechanisms, namely ferromagnetic super-exchange and direct-exchange interactions, which are largely decoupled because of their significant difference in strength at the strong- and weak-interaction limits. This allows the much weaker interlayer magnetic coupling to be more feasibly tuned by stacking orders solely. Given the fact that interlayer magnetic properties can be altered by changing crystal structure with different stacking orders, our work opens a new paradigm for tuning interlayer magnetic properties with the freedom of stacking order in two dimensional layered materials.
The emergence of two-dimensional (2D) magnetic crystals and moire engineering has opened the door for devising new magnetic ground states via competing interactions in moire superlattices. Although a suite of interesting phenomena, including multi-flavor magnetic states, noncollinear magnetic states, moire magnon bands and magnon networks, has been predicted, nontrivial magnetic ground states in twisted bilayer magnetic crystals have yet to be realized. Here, by utilizing the stacking-dependent interlayer exchange interactions in CrI3, we demonstrate in small-twist-angle bilayer CrI3 a noncollinear magnetic ground state. It consists of both antiferromagnetic (AF) and ferromagnetic (FM) domains and is a result of the competing interlayer AF coupling in the monoclinic stacking regions of the moire superlattice and the energy cost for forming AF-FM domain walls. Above the critical twist angle of ~ 3{deg}, the noncollinear state transitions abruptly to a collinear FM ground state. We further show that the noncollinear magnetic state can be controlled by gating through the doping-dependent interlayer AF interaction. Our results demonstrate the possibility of engineering moire magnetism in twisted bilayer magnetic crystals, as well as gate-voltage-controllable high-density magnetic memory storage.
Layered platinum tellurium (PtTe2) was recently synthesized with controllable layer numbers down to a monolayer limit. Using ab initio calculations based on anisotropic Midgal-Eliashberg formalism, we show that by rubidium (Rb) intercalation, weak superconductivity in bilayer PtTe2 can be significantly boosted with superconducting Tc = 8 K in the presence of spin-orbit coupling (SOC). The intercalant on one hand mediates the interlayer coupling and serves as an electron donor, leading to large density of states at Fermi energy. On the other hand, it increases the mass-enhancement parameter with electron-phonon coupling strength comparable to that of Pt. The potassium intercalated bilayer PtTe2 has a comparable Tc to the case of Rb intercalation. The relatively high Tc with SOC combined with experimental accessible crystal structures suggest that these superconductors are promising platforms to study the novel quantum physics associated with two-dimensional superconductivity, such as the recently proposed type-II Ising superconductivity.
230 - Cheng Zhang , Yue Gu , Le Wang 2021
The research on van der Waals (vdW) layered ferromagnets have promoted the development of nanoscale spintronics and applications. However, low-temperature ferromagnetic properties of these materials greatly hinder their applications. Here, we report pressure-enhanced ferromagnetic behaviours in layered CrSiTe3 flakes revealed by high-pressure magnetic circular dichroism (MCD) measurement. At ambient pressure, CrSiTe3 undergoes a paramagnetic-to-ferromagnetic phase transition at 32.8 K, with a negligible hysteresis loop, indicating a soft ferromagnetic behaviour. Under 4.6 GPa pressure, the soft ferromagnet changes into hard one, signalled by a rectangular hysteretic loop with remnant magnetization at zero field. Interestingly, with further increasing pressure, the coercive field (H_c) dramatically increases from 0.02 T at 4.6 GPa to 0.17 T at 7.8 GPa, and the Curie temperature (T_c^h: the temperature for closing the hysteresis loop) also increases from ~36 K at 4.6 GPa to ~138 K at 7.8 GPa. The influences of pressure on exchange interactions are further investigated by density functional theory calculations, which reveal that the in-plane nearest-neighbor exchange interaction and magneto-crystalline anisotropy increase simultaneously as pressure increases, leading to increased H_c and T_c^h in experiments. The effective interaction between magnetic couplings and external pressure offers new opportunities for both searching room-temperature layered ferromagnets and designing pressure-sensitive magnetic functional devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا