Do you want to publish a course? Click here

Towards Equitable, Diverse, and Inclusive Science Collaborations: The Multimessenger Diversity Network

279   0   0.0 ( 0 )
 Added by Ellen Bechtol
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Multimessenger Diversity Network (MDN), formed in 2018, extends the basic principle of multimessenger astronomy -- that working collaboratively with different approaches enhances understanding and enables previously impossible discoveries -- to equity, diversity, and inclusion (EDI) in science research collaborations. With support from the National Science Foundation INCLUDES program, the MDN focuses on increasing EDI by sharing knowledge, experiences, training, and resources among representatives from multimessenger science collaborations. Representatives to the MDN become engagement leads in their collaboration, extending the reach of the community of practice. An overview of the MDN structure, lessons learned, and how to join are presented.



rate research

Read More

The Astrophysical Multimessenger Observatory Network (AMON) has been built with the purpose of enabling near real-time coincidence searches using data from leading multimessenger observatories and astronomical facilities. Its mission is to evoke discovery of multimessenger astrophysical sources, exploit these sources for purposes of astrophysics and fundamental physics, and explore multimessenger datasets for evidence of multimessenger source population AMON aims to promote the advancement of multimessenger astrophysics by allowing its participants to study the most energetic phenomena in the universe and to help answer some of the outstanding enigmas in astrophysics, fundamental physics, and cosmology. The main strength of AMON is its ability to combine and analyze sub-threshold data from different facilities. Such data cannot generally be used stand-alone to identify astrophysical sources. The analyses algorithms used by AMON can identify statistically significant coincidence candidates of multimessenger events, leading to the distribution of AMON alerts used by partner observatories for real-time follow-up that may identify and, potentially, confirm the reality of the multimessenger association. We present the science motivation, partner observatories, implementation and summary of the current status of the AMON project.
Astronomy across world cultures is rooted in Indigenous Knowledge. We share models of partnering with indigenous communities involving Collaboration with Integrity to co-create an inclusive scientific enterprise on Earth and in space.
200 - A. Bayo , M. J. Graham , D. Norman 2021
La Serena School for Data Science is a multidisciplinary program with six editions so far and a constant format: during 10-14 days, a group of $sim$30 students (15 from the US, 15 from Chile and 1-3 from Caribbean countries) and $sim$9 faculty gather in La Serena (Chile) to complete an intensive program in Data Science with emphasis in applications to astronomy and bio-sciences. The students attend theoretical and hands-on sessions, and, since early on, they work in multidisciplinary groups with their mentors (from the faculty) on real data science problems. The SOC and LOC of the school have developed student selection guidelines to maximize diversity. The program is very successful as proven by the high over-subscription rate (factor 5-8) and the plethora of positive testimony, not only from alumni, but also from current and former faculty that keep in contact with them.
LISA will open the mHz band of gravitational waves (GWs) to the astronomy community. The strong gravity which powers the variety of GW sources in this band is also crucial in a number of important astrophysical processes at the current frontiers of astronomy. These range from the beginning of structure formation in the early universe, through the origin and cosmic evolution of massive black holes in concert with their galactic environments, to the evolution of stellar remnant binaries in the Milky Way and in nearby galaxies. These processes and their associated populations also drive current and future observations across the electromagnetic (EM) spectrum. We review opportunities for science breakthroughs, involving either direct coincident EM+GW observations, or indirect multimessenger studies. We argue that for the US community to fully capitalize on the opportunities from the LISA mission, the US efforts should be accompanied by a coordinated and sustained program of multi-disciplinary science investment, following the GW data through to its impact on broad areas of astrophysics. Support for LISA-related multimessenger observers and theorists should be sized appropriately for a flagship observatory and may be coordinated through a dedicated mHz GW research center.
242 - Thomas Kupfer 2019
Galactic binaries with orbital periods less than $approx$1 hr are strong gravitational wave sources in the mHz regime, ideal for the Laser Interferometer Space Antenna (LISA). In fact, theory predicts that emph{LISA} will resolve tens of thousands of Galactic binaries individually with a large fraction being bright enough for electromagnetic observations. This opens up a new window where we can study a statistical sample of compact Galactic binaries in both, the electromagnetic as well the gravitational wavebands. Using multi-messenger observations we can measure tidal effects in detached double WD systems, which strongly impact the outcome of WD mergers. For accreting WDs as well as NS binaries, multi-messenger observations give us the possibility to study the angular momentum transport due to mass transfer. In this white paper we present an overview of the opportunities for research on Galactic binaries using multi-messenger observations and summarize some recommendations for the 2020 time-frame.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا