No Arabic abstract
La Serena School for Data Science is a multidisciplinary program with six editions so far and a constant format: during 10-14 days, a group of $sim$30 students (15 from the US, 15 from Chile and 1-3 from Caribbean countries) and $sim$9 faculty gather in La Serena (Chile) to complete an intensive program in Data Science with emphasis in applications to astronomy and bio-sciences. The students attend theoretical and hands-on sessions, and, since early on, they work in multidisciplinary groups with their mentors (from the faculty) on real data science problems. The SOC and LOC of the school have developed student selection guidelines to maximize diversity. The program is very successful as proven by the high over-subscription rate (factor 5-8) and the plethora of positive testimony, not only from alumni, but also from current and former faculty that keep in contact with them.
The International Particle Physics Outreach Group (IPPOG) has been making concerted and systematic efforts to present and popularise particle physics across all audiences and age groups since 1997. Today the scientific community has in IPPOG a strategic pillar in fostering long-term, sustainable support for fundamental research around the world. One of the main tools IPPOG has been offering to the scientific community, teachers and educators for almost 10 years is the Resource Database (RDB), an online platform containing a collection of high quality engaging education and outreach materials in particle physics and related sciences.
The traditional university science curriculum was designed to train specialists in specific disciplines. However, in universities all over the world, science students are going into increasingly diverse careers and the current model does not fit their needs. Advances in technology also make certain modes of learning obsolete. In the last 10 years, the Faculty of Science of the University of Hong Kong has undertaken major curriculum reforms. A sequence of science foundation courses required of all incoming science students are designed to teach science in an integrated manner, and to emphasize the concepts and utilities, not computational techniques, of mathematics. A number of non-discipline specific common core courses have been developed to broaden students awareness of the relevance of science to society and the interdisciplinary nature of science. By putting the emphasis on the scientific process rather than the outcome, students are taught how to identify, formulate, and solve diverse problems.
The authors use an action research (AR) approach in a collegiate studio physics class to investigate the power of partnerships via conferences as they relate to issues of establishing a student/mentor rapport, empowering students to reduce inequity, and the successes and barriers to hearing students voices. The graduate teaching assistant (TA, Author 1) conducted one-on-one conferences with 29 students, elicited student opinions about the progress of the course, and talked with faculty, TAs, and an undergraduate supplemental instructor for other sections of the course. At the end of the semester, the students reported increased knowledge of the TA as a person and as an instructor, and vice versa. Sixty-five percent of students reported no interest in changing circumstances to make it easier to talk about personal concerns with the TA. College students reluctantly voiced their opinions about the course, possibly due to the power structure of the classroom. Other TAs in the department expressed mostly disinterest in the project, while faculty members were interested in student learning but skeptical of student empowerment. A case study of one student is presented, wherein his attendance improved in the course and he received additional help outside class, both possibly as a result of the student/TA conferences. Students in this studio physics section were more likely to interact directly with faculty or TAs during lectures, but less likely to do so during lab sessions, than were students in a non-studio physics section.
In Big data era, information integration often requires abundant data extracted from massive data sources. Due to a large number of data sources, data source selection plays a crucial role in information integration, since it is costly and even impossible to access all data sources. Data Source selection should consider both efficiency and effectiveness issues. For efficiency, the approach should achieve high performance and be scalability to fit large data source amount. From effectiveness aspect, data quality and overlapping of sources are to be considered, since data quality varies much from data sources, with significant differences in the accuracy and coverage of the data provided, and the overlapping of sources can even lower the quality of data integrated from selected data sources. In this paper, we study source selection problem in textit{Big Data Era} and propose methods which can scale to datasets with up to millions of data sources and guarantee the quality of results. Motivated by this, we propose a new object function taking the expected number of true values a source can provide as a criteria to evaluate the contribution of a data source. Based on our proposed index we present a scalable algorithm and two pruning strategies to improve the efficiency without sacrificing precision. Experimental results on both real world and synthetic data sets show that our methods can select sources providing a large proportion of true values efficiently and can scale to massive data sources.
This article describes a set of curriculum modifications designed to integrate gravitational-wave science into a high school physics or astronomy curriculum. Gravitational-wave scientists are on the verge of being able to detect extreme cosmic events, like the merger of two black holes, happening hundreds of millions of light years away. Their work has the potential to propel astronomy into a new era by providing an entirely new means of observing astronomical phenomena. Gravitational-wave science encompasses astrophysics, physics, engineering, and quantum optics. As a result, this curriculum exposes students to the interdisciplinary nature of science. It also provides an authentic context for students to learn about astrophysical sources, data analysis techniques, cutting-edge detector technology, and error analysis.