Do you want to publish a course? Click here

Phase Spectrometry For High Precision mm-Wave DoA Estimation In 5G Systems

61   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we introduce a direction of arrival (DoA) estimation method based on a technique named phase spectrometry (PS) that is mainly suitable for mm-Wave and Tera-hertz applications as an alternative for DoA estimation using antenna arrays. PS is a conventional technique in optics to measure phase difference between two waves at different frequencies of the spectrum. Here we adapt PS for the same purpose in the radio frequency band. We show that we can emulate a large array exploiting only two antennas. To this end, we measure phase difference between the two antennas for different frequencies using PS. Consequently, we demonstrate that we can radically reduce the complexity of the receiver required for DoA estimation employing PS. We consider two different schemes for implementation of PS: via a long wave-guide and frequency code-book. We show that using a frequency code-book, higher processing gain can be achieved. Moreover, we introduce three PS architectures: for device to device DoA estimation, for base-station in uplink scenario and an ultra-fast DoA estimation technique mainly for radar and aerial and satellite communications. Simulation and analytical results show that, PS is capable of detecting and discriminating between multiple incoming signals with different DoAs. Moreover, our results also show that, the angular resolution of PS depends on the distance between the two antennas and the band-width of the frequency code-book. Finally, the performance of PS is compared with a uniform linear array (ULA) and it is shown that PS can perform the same, with a much less complex receiver, and without the prerequisite of spatial search for DoA estimation.

rate research

Read More

The near-field effect of short-range multiple-input multiple-output (MIMO) systems imposes many challenges on direction-of-arrival (DoA) estimation. Most conventional scenarios assume that the far-field planar wavefronts hold. In this paper, we investigate the DoA estimation problem in short-range MIMO communications, where the effect of near-field spherical wave is non-negligible. By converting it into a regression task, a novel DoA estimation framework based on complex-valued deep learning (CVDL) is proposed for the near-field region in short-range MIMO communication systems. Under the assumption of a spherical wave model, the array steering vector is determined by both the distance and the direction. However, solving this regression task containing a massive number of variables is challenging, since datasets need to capture numerous complicated feature representations. To overcome this, a virtual covariance matrix (VCM) based on received signals is constructed, and thus such features extracted from the VCM can deal with the complicated coupling relationship between the direction and the distance. Although the emergence of wireless big data driven by future communication networks promotes deep learning-based wireless signal processing, the learning algorithms of complex-valued signals are still ongoing. This paper proposes a one-dimensional (1-D) residual network that can directly tackle complex-valued features due to the inherent 1-D structure of signal subspace vectors. In addition, we put forth a cropped VCM based policy which can be applied to different antenna sizes. The proposed method is able to fully exploit the complex-valued information. Our simulation results demonstrate the superiority of the proposed CVDL approach over the baseline schemes in terms of the accuracy of DoA estimation.
In this paper, a wide-area measurement system (WAMS)-based method is proposed to estimate the system state matrix for AC system with integrated voltage source converters (VSCs) and identify the electromechanical modes. The proposed method is purely model-free, requiring no knowledge of accurate network topology and system parameters. Numerical studies in the IEEE 68-bus system with integrated VSCs show that the proposed measurementbased method can accurately identify the electromechanical modes and estimate the damping ratios, the mode shapes, and the participation factors. The work may serve as a basis for developing WAMS-based damping control using VSCs in the future.
The capability to achieve high-precision positioning accuracy has been considered as one of the most critical requirements for vehicle-to-everything (V2X) services in the fifth-generation (5G) cellular networks. The non-line-of-sight (NLOS) connectivity, coverage, reliability requirements, the minimum number of available anchors, and bandwidth limitations are among the main challenges to achieve high accuracy in V2X services. This work provides an overview of the potential solutions to provide the new radio (NR) V2X users (UEs) with high positioning accuracy in the future 3GPP releases. In particular, we propose a novel selective positioning solution to dynamically switch between different positioning technologies to improve the overall positioning accuracy in NR V2X services, taking into account the locations of V2X UEs and the accuracy of the collected measurements. Furthermore, we use high-fidelity system-level simulations to evaluate the performance gains of fusing the positioning measurements from different technologies in NR V2X services. Our numerical results show that the proposed hybridized schemes achieve a positioning error $boldsymbol{leq}$ 3 m with $boldsymbol{approx}$ 76% availability compared to $boldsymbol{approx}$ 55% availability when traditional positioning methods are used. The numerical results also reveal a potential gain of $boldsymbol{approx}$ 56% after leveraging the road-side units (RSUs) to improve the tail of the UEs positioning error distribution, i.e., worst-case scenarios, in NR V2X services.
In this work, a neural network based terramechanics model and terrain estimator are presented with an outlook for optimal control applications such as model predictive control. Recognizing the limitations of the state-of-the-art terramechanics models in terms of operating conditions, computational cost, and continuous differentiability for gradient-based optimization, an efficient and twice continuously differentiable terramechanics model is developed using neural networks for dynamic operations on deformable terrains. It is demonstrated that the neural network terramechanics model is able to predict the lateral tire forces accurately and efficiently compared to the Soil Contact Model as a state-of-the-art model. Furthermore, the neural network terramechanics model is implemented within a terrain estimator and it is shown that using this model the estimator converges within around 2% of the true terrain parameter. Finally, with model predictive control applications in mind, which typically rely on bicycle models for their predictions, it is demonstrated that utilizing the estimated terrain parameter can reduce prediction errors of a bicycle model by orders of magnitude. The result is an efficient, dynamic, twice continuously differentiable terramechanics model and estimator that has inherent advantages for implementation in model predictive control as compared to previously established models.
In this paper, we focus on the problem of blind joint calibration of multiband transceivers and time-delay (TD) estimation of multipath channels. We show that this problem can be formulated as a particular case of covariance matching. Although this problem is severely ill-posed, prior information about radio-frequency chain distortions and multipath channel sparsity is used for regularization. This approach leads to a biconvex optimization problem, which is formulated as a rank-constrained linear system and solved by a simple group Lasso algorithm.Numerical experiments show that the proposed algorithm provides better calibration and higher resolution for TD estimation than current state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا