Do you want to publish a course? Click here

Solid-state Janus nanoprecipitation enables amorphous-like heat conduction in crystalline Mg3Sb2-based thermoelectric materials

80   0   0.0 ( 0 )
 Added by Per Eklund
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solid-state precipitation can be used to tailor materials properties, ranging from ferromagnets and catalysts to mechanical strengthening and energy storage. Thermoelectric properties can be modified by precipitation to enhance phonon scattering while retaining charge-carrier transmission. Here, we uncover unconventional dual Janus-type nanoprecipitates in Mg3Sb1.5Bi0.5 formed by side-by-side Bi- and Ge-rich appendages, in contrast to separate nanoprecipitate formation. These Janus nanoprecipitates result from local co-melting of Bi and Ge during sintering, enabling an amorphous-like lattice thermal conductivity. A precipitate size effect on phonon scattering is observed due to the balance between alloy-disorder and nanoprecipitate scattering. The thermoelectric figure-of-merit ZT reaches 0.6 near room temperature and 1.6 at 773 K. The Janus nanoprecipitation can be introduced into other materials and may act as a general property-tailoring mechanism.



rate research

Read More

349 - B. Li , Y. Kawakita , Q. Zhang 2017
A solid conducts heat through both transverse and longitudinal acoustic phonons, but a liquid employs only longitudinal vibrations. Here, we report that the crystalline solid AgCrSe2 has liquid-like thermal conduction. In this compound, Ag atoms exhibit a dynamic duality that they are exclusively involved in intense low-lying transverse acoustic phonons while they also undergo local fluctuations inherent in an order-to-disorder transition occurring at 450 K. As a consequence of this extreme disorder-phonon coupling, transverse acoustic phonons become damped as approaching the transition temperature, above which they are not defined anymore because their lifetime is shorter than the relaxation time of local fluctuations. Nevertheless, the damped longitudinal acoustic phonon survives for thermal transport. This microscopic insight might reshape the fundamental idea on thermal transport properties of matter and facilitates the optimization of thermoelectrics.
Finding new ionic conductors that enable significant advancements in the development of energy-storage devices is a challenging goal of current material science. Aside of material classes as ionic liquids or amorphous ion conductors, the so-called plastic crystals (PCs) have been shown to be good candidates combining high conductivity and favourable mechanical properties. PCs are formed by molecules whose orientational degrees of freedom still fluctuate despite the material exhibits a well-defined crystalline lattice. Here we show that the conductivity of Li+ ions in succinonitrile, the most prominent molecular PC electrolyte, can be enhanced by several decades when replacing part of the molecules in the crystalline lattice by larger ones. Dielectric spectroscopy reveals that this is accompanied by a stronger coupling of ionic and reorientational motions. These findings, which can be understood in terms of an optimised revolving door mechanism, open a new path towards the development of better solid-state electrolytes.
Chalcogenide alloys are materials of interest for optical recording and non-volatile memories. We perform ab-initio molecular dynamics simulations aiming at shading light onto the structure of amorphous Ge2Sb2Te5 (GST), the prototypical material in this class. First principles simulations show that amorphous GST obtained by quenching from the liquid phase displays two types of short range order. One third of Ge atoms are in a tetrahedral environment while the remaining Ge, Sb and Te atoms display a defective octahedral environment, reminiscent of cubic crystalline GST.
Solid-state batteries (SSBs) can offer a paradigm shift in battery safety and energy density. Yet, the promise hinges on the ability to integrate high-performance electrodes with state-of-the-art solid electrolytes. For example, lithium (Li) metal, the most energy-dense anode candidate, suffers from severe interfacial chemomechanical issues that lead to cell failure. Li alloys of In/Sn are attractive alternatives, but their exploration has mostly been limited to the low capacity(low Li content)and In rich Li$_x$In (x$leq$0.5). Here, the fundamental electro-chemo-mechanical behavior of Li-In and Li-Sn alloys of varied Li stoichiometries is unravelled in sulfide electrolyte based SSBs. The intermetallic electrodes developed through a controlled synthesis and fabrication technique display impressive (electro)chemical stability with Li$_6$PS$_5$Cl as the solid electrolyte and maintain nearly perfect interfacial contact during the electrochemical Li insertion/deinsertion under an optimal stack pressure. Their intriguing variation in the Li migration barrier with composition and its influence on the observed Li cycling overpotential is revealed through combined computational and electrochemical studies. Stable interfacial chemomechanics of the alloys allow long-term dendrite free Li cycling (>1000 h) at relatively high current densities (1 mA cm$^{-2}$) and capacities (1 mAh cm$^{-2}$), as demonstrated for Li$_{13}$In$_3$ and Li$_{17}$Sn$_4$, which are more desirable from a capacity and cost consideration compared to the low Li content analogues. The presented understanding can guide the development of high-capacity Li-In/Sn alloy anodes for SSBs.
Ternary nitride materials hold promise for many optical, electronic, and refractory applications yet their preparation via solid-state synthesis remains challenging. Often, high pressures or reactive gasses are used to manipulate the effective chemical potential of nitrogen, yet these strategies require specialized equipment. Here we report on a simple two-step synthesis using ion-exchange reactions that yield rocksalt-derived MgZrN$_2$ and Mg$_2$NbN$_3$, as well as layered MgMoN$_2$. All three compounds show nearly temperature-independent and weak paramagnetic responses to an applied magnetic field at cryogenic temperatures indicating phase pure products. The key to synthesizing these ternary materials is an initial low-temperature step (300-450 $^{circ}$C) to promote Mg-M-N bond formation. Then the products are annealed (800-900 $^{circ}$C) to increase crystalline domains of the ternary product. Calorimetry experiments reveal that initial reaction temperatures are determined by phase transitions of reaction precursors, whereas heating directly to high temperatures results in decomposition. These two-step reactions provide a rational guide to material discovery of other bulk ternary nitrides.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا