No Arabic abstract
In this work, we investigate the Hawking radiation in higher dimensional Reissner-Nordstrom black holes as received by an observer, resides at infinity. The frequency-dependent transmission rates, which deform the thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. Apart from the case of four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordstrom metrics, and the results are found to be somewhat sensitive to the spacetime dimension. In general, it is observed that the transmission coefficients practically vanishes when the frequency of the emitted particle approaches zero. It increases with increasing frequency and eventually saturates to some value. For four-dimensional spacetime, the above result is shown to be mostly independent of the metrics parameter, neither of the orbital quantum number of the particle, once the location of the event horizon, $r_h$, and the product of the charges of the black hole and the particle $qQ$ are given. For higher-dimensional cases, on the other hand, the convergence becomes more slowly. Moreover, the difference between states with different orbital quantum numbers is found to be more significant. As the magnitude of the product of charges $qQ$ becomes more significant, the transmission coefficient exceeds one. In other words, the resultant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relation between the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.
Despite of over thirty years of research of the black hole thermodynamics our understanding of the possible role played by the inner horizons of Reissner-Nordstrom and Kerr-Newman black holes in black hole thermodynamics is still somewhat incomplete: There are derivations which imply that the temperature of the inner horizon is negative and it is not quite clear what this means. Motivated by this problem we perform a detailed analysis of the radiation emitted by the inner horizon of the Reissner-Nordstrom black hole. As a result we find that in a maximally extended Reissner-Nordstrom spacetime virtual particle-antiparticle pairs are created at the inner horizon of the Reissner-Nordstrom black hole such that real particles with positive energy and temperature are emitted towards the singularity from the inner horizon and, as a consequence, antiparticles with negative energy are radiated away from the singularity through the inner horizon. We show that these antiparticles will come out from the white hole horizon in the maximally extended Reissner-Nordstrom spacetime, at least when the hole is near extremality. The energy spectrum of the antiparticles leads to a positive temperature for the white hole horizon. In other words, our analysis predicts that in addition to the radiation effects of black hole horizons, also the white hole horizon radiates. The black hole radiation is caused by the quantum effects at the outer horizon, whereas the white hole radiation is caused by the quantum effects at the inner horizon of the Reissner-Nordstrom black hole.
In this paper we consider spin-3/2 fields in a $D$-dimensional Reissner-Nordstrom black hole spacetime. As these spacetimes are not Ricci-flat, it is necessary to modify the covariant derivative to the supercovariant derivative, by including terms related to the background electromagnetic fields, so as to maintain the gauge symmetry. Using this supercovariant derivative we arrive at the corresponding Rarita-Schwinger equation in a charged black hole background. As in our previous works, we exploit the spherically symmetry of the spacetime and use the eigenspinor-vectors on an $N$-sphere to derive the radial equations for both non-transverse-traceless (non-TT) modes and TT modes. We then determine the quasi-normal mode and absorption probabilities of the associated gauge-invariant variables using the WKB approximation and the asymptotic iteration method. We then concentrate on how these quantities change with the charge of the black hole, especially when they reach the extremal limits.
We investigate the radiation emitted from a scalar source in circular orbit around a Reissner-Nordstrom black hole. Particle and energy emission rates are analytically calculated in the low- and high-frequency regimes and shown to be in full agreement with a numerical calculation. Our investigation is connected with the recent discussion on the validity of the cosmic censorship conjecture in the quantum realm.
Studying particle motion in the gravitational field of a black hole from the perspective of different observers is important for separating the coordinate artifacts from the physical phenomena. In this paper, we show that a freely falling test particle exhibits gravitational repulsion by a black hole as seen by an asymptotic observer, whereas nothing of the kind happens as recorded by a freely falling observer or by an observer located at a finite distance from the event horizon. This analysis is carried out for a general Reissner-Nordstrom, an extremal Reissner-Nordstrom, and a Schwarzschild black hole. We are lead to conclude that the origin of these bizarre results lies in the fact that the quantities measured by the different observers are neither Lorentz scalars nor gauge invariant.
We study black holes produced by the collapse of a spherically symmetric charged scalar field in asymptotically flat space. We employ a late time expansion and show decaying fluxes of radiation through the event horizon imply the black hole must contain a null singularity on the Cauchy horizon and a central spacelike singularity.