No Arabic abstract
Despite of over thirty years of research of the black hole thermodynamics our understanding of the possible role played by the inner horizons of Reissner-Nordstrom and Kerr-Newman black holes in black hole thermodynamics is still somewhat incomplete: There are derivations which imply that the temperature of the inner horizon is negative and it is not quite clear what this means. Motivated by this problem we perform a detailed analysis of the radiation emitted by the inner horizon of the Reissner-Nordstrom black hole. As a result we find that in a maximally extended Reissner-Nordstrom spacetime virtual particle-antiparticle pairs are created at the inner horizon of the Reissner-Nordstrom black hole such that real particles with positive energy and temperature are emitted towards the singularity from the inner horizon and, as a consequence, antiparticles with negative energy are radiated away from the singularity through the inner horizon. We show that these antiparticles will come out from the white hole horizon in the maximally extended Reissner-Nordstrom spacetime, at least when the hole is near extremality. The energy spectrum of the antiparticles leads to a positive temperature for the white hole horizon. In other words, our analysis predicts that in addition to the radiation effects of black hole horizons, also the white hole horizon radiates. The black hole radiation is caused by the quantum effects at the outer horizon, whereas the white hole radiation is caused by the quantum effects at the inner horizon of the Reissner-Nordstrom black hole.
For the Schwarzschild black hole the Bekenstein-Hawking entropy is proportional to the area of the event horizon. For the black holes with two horizons the thermodynamics is not very clear, since the role of the inner horizons is not well established. Here we calculate the entropy of the Reissner-Nordstrom black hole and of the Kerr black hole, which have two horizons. For the spherically symmetric Reissner-Nordstrom black hole we used several different approaches. All of them give the same result for the entropy and for the corresponding temperature of the thermal Hawking radiation. The entropy is not determined by the area of the outer horizon, and it is not equal to the sum of the entropies of two horizons. It is determined by the correlations between the two horizons, due to which the total entropy of the black hole and the temperature of Hawking radiation depend only on mass $M$ of the black hole and do not depend on the black hole charge $Q$. For the Kerr and Kerr-Newman black holes it is shown that their entropy has the similar property: it depends only on mass $M$ of the black hole and does not depend on the angular momentum $J$ and charge $Q$.
We study the interior of a Reissner-Nordstrom Black-Hole (RNBH) using Relativistic Quantum Geometry, which was introduced in some previous works. We found discrete energy levels for a scalar field from a polynomial condition for the Heun Confluent functions expanded around the effective causal radius $r_*$. From the solutions it is obtained that the uncertainty principle is valid for each energy level of space-time, in the form: $E_n, r_{*,n}=hbar/2$, and the charged mass is discretized and distributed in a finite number of states. The classical RNBH entropy is recovered as the limit case where the number of states is very large, and the RNBH quantum temperature depends on the number of states in the interior of the RNBH. This temperature, depending of the number of states of the RNBH, is related with the Bekeinstein-Hawking (BH) temperature: $T_{BH} leq T_{N} < 2,T_{BH}$.
We investigate the radiation emitted from a scalar source in circular orbit around a Reissner-Nordstrom black hole. Particle and energy emission rates are analytically calculated in the low- and high-frequency regimes and shown to be in full agreement with a numerical calculation. Our investigation is connected with the recent discussion on the validity of the cosmic censorship conjecture in the quantum realm.
In this work, we investigate the Hawking radiation in higher dimensional Reissner-Nordstrom black holes as received by an observer, resides at infinity. The frequency-dependent transmission rates, which deform the thermal radiation emitted in the vicinity of the black hole horizon, are evaluated numerically. Apart from the case of four-dimensional spacetime, the calculations are extended to higher dimensional Reissner-Nordstrom metrics, and the results are found to be somewhat sensitive to the spacetime dimension. In general, it is observed that the transmission coefficients practically vanishes when the frequency of the emitted particle approaches zero. It increases with increasing frequency and eventually saturates to some value. For four-dimensional spacetime, the above result is shown to be mostly independent of the metrics parameter, neither of the orbital quantum number of the particle, once the location of the event horizon, $r_h$, and the product of the charges of the black hole and the particle $qQ$ are given. For higher-dimensional cases, on the other hand, the convergence becomes more slowly. Moreover, the difference between states with different orbital quantum numbers is found to be more significant. As the magnitude of the product of charges $qQ$ becomes more significant, the transmission coefficient exceeds one. In other words, the resultant spectral flux is amplified, which results in an accelerated process of black hole evaporation. The relation between the calculated outgoing transmission coefficient with existing results on the greybody factor is discussed.
In classical General Relativity, the values of fields on spacetime are uniquely determined by their values at an initial time within the domain of dependence of this initial data surface. However, it may occur that the spacetime under consideration extends beyond this domain of dependence, and fields, therefore, are not entirely determined by their initial data. This occurs, for example, in the well-known (maximally) extended Reissner-Nordstrom or Reissner-Nordstrom-deSitter (RNdS) spacetimes. The boundary of the region determined by the initial data is called the Cauchy horizon. It is located inside the black hole in these spacetimes. The strong cosmic censorship conjecture asserts that the Cauchy horizon does not, in fact, exist in practice because the slightest perturbation (of the metric itself or the matter fields) will become singular there in a sufficiently catastrophic way that solutions cannot be extended beyond the Cauchy horizon. Thus, if strong cosmic censorship holds, the Cauchy horizon will be converted into a final singularity, and determinism will hold. Recently, however, it has been found that, classically this is not the case in RNdS spacetimes in a certain range of mass, charge, and cosmological constant. In this paper, we consider a quantum scalar field in RNdS spacetime and show that quantum theory comes to the rescue of strong cosmic censorship. We find that for any state that is nonsingular (i.e., Hadamard) within the domain of dependence, the expected stress-tensor blows up with affine parameter, $V$, along a radial null geodesic transverse to the Cauchy horizon as $T_{VV} sim C/V^2$ with $C$ independent of the state and $C eq 0$ generically in RNdS spacetimes. This divergence is stronger than in the classical theory and should be sufficient to convert the Cauchy horizon into a strong curvature singularity.