No Arabic abstract
For an algebraic number $alpha$ and $gammain mathbb{R}$, $h(alpha)$ be the (logarithmic) Weil height, and $h_gamma(alpha)=(mathrm{deg}alpha)^gamma h(alpha)$ be the $gamma$-weighted (logarithmic) Weil height of $alpha$. Let $f:overline{mathbb{Q}}to [0,infty)$ be a function on the algebraic numbers $overline{mathbb{Q}}$, and let $Ssubset overline{mathbb{Q}}$. The Northcott number $mathcal{N}_f(S)$ of $S$, with respect to $f$, is the infimum of all $Xgeq 0$ such that ${alpha in S; f(alpha)< X}$ is infinite. This paper studies the set of Northcott numbers $mathcal{N}_f(mathcal{O})$ for subrings of $overline{mathbb{Q}}$ for the house, the Weil height, and the $gamma$-weighted Weil height. We show: (1) Every $tgeq 1$ is the Northcott number of a ring of integers of a field w.r.t. the house. (2) For each $tgeq 0$ there exists a field with Northcott number in $ [t,2t]$ w.r.t. the Weil height $h(cdot)$. (3) For all $0leq gammaleq 1$ and $gamma<gamma$ there exists a field $K$ with $mathcal{N}_{h_{gamma}}(K)=0$ and $mathcal{N}_{h_gamma}(K)=infty$. For $(1)$ we provide examples that satisfy an analogue of Julia Robinons property (JR), examples that satisfy an analogue of Vidaux and Videlas isolation property, and examples that satisfy neither of those. Item $(2)$ concerns a question raised by Vidaux and Videla due to its direct link with decidability theory via the Julia Robinson number. Item (3) is a strong generalisation of the known fact that there are fields that satisfy the Lehmer conjecture but which are not Bogomolov in the sense of Bombieri and Zannier.
We prove a new Bertini-type Theorem with explicit control of the genus, degree, height, and the field of definition of the constructed curve. As a consequence we provide a general strategy to reduce certain height and rank estimates on abelian varieties over a number field $K$ to the case of jacobian varieties defined over a suitable extension of $K$.
Let $q$ be an odd power of a prime $pin mathbb{N}$, and $mathrm{PPSP}(sqrt{q})$ be the finite set of isomorphism classes of principally polarized superspecial abelian surfaces in the simple isogeny class over $mathbb{F}_q$ corresponding to the real Weil $q$-numbers $pm sqrt{q}$. We produce explicit formulas for $mathrm{PPSP}(sqrt{q})$ of the following three kinds: (i) the class number formula, i.e. the cardinality of $mathrm{PPSP}(sqrt{q})$; (ii) the type number formula, i.e. the number of endomorphism rings up to isomorphism of members of $mathrm{PPSP}(sqrt{q})$; (iii) the refined class number formula with respect to each finite group $mathbf{G}$, i.e. the number of elements of $mathrm{PPSP}(sqrt{q})$ whose automorphism group coincides with $mathbf{G}$. Similar formulas are obtained for other polarized superspecial members of this isogeny class using polarization modules. We observe several surprising identities involving the arithmetic genus of certain Hilbert modular surface on one side and the class number or type number of $(P, P_+)$-polarized superspecial abelian surfaces in this isogeny class on the other side.
This paper explores analogies between the Weil proof of the Riemann hypothesis for function fields and the geometry of the adeles class space, which is the noncommutative space underlying Connes spectral realization of the zeros of the Riemann zeta function. We consider the cyclic homology of the cokernel (in the abelian category of cyclic modules) of the ``restriction map defined by the inclusion of the ideles class group of a global field in the noncommutative adeles class space. Weils explicit formula can then be formulated as a Lefschetz trace formula for the induced action of the ideles class group on this cohomology. In this formulation the Riemann hypothesis becomes equivalent to the positivity of the relevant trace pairing. This result suggests a possible dictionary between the steps in the Weil proof and corresponding notions involving the noncommutative geometry of the adeles class space, with good working notions of correspondences, degree and codegree etc. In particular, we construct an analog for number fields of the algebraic points of the curve for function fields, realized here as classical points (low temperature KMS states) of quantum statistical mechanical systems naturally associated to the periodic orbits of the action of the ideles class group, that is, to the noncommutative spaces on which the geometric side of the trace formula is supported.
We construct special cycles on the moduli stack of unitary shtukas. We prove an identity between (1) the r-th central derivative of non-singular Fourier coefficients of a normalized Siegel--Eisenstein series, and (2) the degree of special cycles of virtual dimension 0 on the moduli stack of unitary shtukas with r legs. This may be viewed as a function-field analogue of the Kudla-Rapoport Conjecture, that has the additional feature of encompassing all higher derivatives of the Eisenstein series.
We investigate the $p$-adic valuation of Weil sums of the form $W_{F,d}(a)=sum_{x in F} psi(x^d -a x)$, where $F$ is a finite field of characteristic $p$, $psi$ is the canonical additive character of $F$, the exponent $d$ is relatively prime to $|F^times|$, and $a$ is an element of $F$. Such sums often arise in arithmetical calculations and also have applications in information theory. For each $F$ and $d$ one would like to know $V_{F,d}$, the minimum $p$-adic valuation of $W_{F,d}(a)$ as $a$ runs through the elements of $F$. We exclude exponents $d$ that are congruent to a power of $p$ modulo $|F^times|$ (degenerate $d$), which yield trivial Weil sums. We prove that $V_{F,d} leq (2/3)[Fcolon{mathbb F}_p]$ for any $F$ and any nondegenerate $d$, and prove that this bound is actually reached in infinitely many fields $F$. We also prove some stronger bounds that apply when $[Fcolon{mathbb F}_p]$ is a power of $2$ or when $d$ is not congruent to $1$ modulo $p-1$, and show that each of these bounds is reached for infinitely many $F$.