No Arabic abstract
Structural engineering knowledge can be of significant importance to the architectural design team during the early design phase. However, architects and engineers do not typically work together during the conceptual phase; in fact, structural engineers are often called late into the process. As a result, updates in the design are more difficult and time-consuming to complete. At the same time, there is a lost opportunity for better design exploration guided by structural feedback. In general, the earlier in the design process the iteration happens, the greater the benefits in cost efficiency and informed de-sign exploration, which can lead to higher-quality creative results. In order to facilitate an informed exploration in the early design stage, we suggest the automation of fundamental structural engineering tasks and introduce ApproxiFramer, a Machine Learning-based system for the automatic generation of structural layouts from building plan sketches in real-time. The system aims to assist architects by presenting them with feasible structural solutions during the conceptual phase so that they proceed with their design with adequate knowledge of its structural implications. In this paper, we describe the system and evaluate the performance of a proof-of-concept implementation in the domain of orthogonal, metal, rigid structures. We trained a Convolutional Neural Net to iteratively generate structural design solutions for sketch-level building plans using a synthetic dataset and achieved an average error of 2.2% in the predicted positions of the columns.
Scalable and cost-effective solutions to renewable energy storage are essential to addressing the worlds rising energy needs while reducing climate change. As we increase our reliance on renewable energy sources such as wind and solar, which produce intermittent power, storage is needed to transfer power from times of peak generation to peak demand. This may require the storage of power for hours, days, or months. One solution that offers the potential of scaling to nation-sized grids is the conversion of renewable energy to other fuels, such as hydrogen or methane. To be widely adopted, this process requires cost-effective solutions to running electrochemical reactions. An open challenge is finding low-cost electrocatalysts to drive these reactions at high rates. Through the use of quantum mechanical simulations (density functional theory), new catalyst structures can be tested and evaluated. Unfortunately, the high computational cost of these simulations limits the number of structures that may be tested. The use of machine learning may provide a method to efficiently approximate these calculations, leading to new approaches in finding effective electrocatalysts. In this paper, we provide an introduction to the challenges in finding suitable electrocatalysts, how machine learning may be applied to the problem, and the use of the Open Catalyst Project OC20 dataset for model training.
We consider a variation on the classical finance problem of optimal portfolio design. In our setting, a large population of consumers is drawn from some distribution over risk tolerances, and each consumer must be assigned to a portfolio of lower risk than her tolerance. The consumers may also belong to underlying groups (for instance, of demographic properties or wealth), and the goal is to design a small number of portfolios that are fair across groups in a particular and natural technical sense. Our main results are algorithms for optimal and near-optimal portfolio design for both social welfare and fairness objectives, both with and without assumptions on the underlying group structure. We describe an efficient algorithm based on an internal two-player zero-sum game that learns near-optimal fair portfolios ex ante and show experimentally that it can be used to obtain a small set of fair portfolios ex post as well. For the special but natural case in which group structure coincides with risk tolerances (which models the reality that wealthy consumers generally tolerate greater risk), we give an efficient and optimal fair algorithm. We also provide generalization guarantees for the underlying risk distribution that has no dependence on the number of portfolios and illustrate the theory with simulation results.
We present a method for improving the efficiency and user experience of freeform illumination design with machine learning. By utilizing orthogonal polynomials to interface with artificial neural networks, we are able to generalize relationships between freeform surface shapes and design parameters. Then, by training the network to generalize the relationship between high-level design goals and final performance, we were able to transform what is traditionally a difficult and computationally intensive problem into a compact, user friendly form. The potential of the proposed method is demonstrated through the design of uniform square patterns from off-axis positions and rectangular patterns of tuneable aspect ratios and distances from the target.
The structural design process for buildings is time-consuming and laborious. To automate this process, structural engineers combine optimization methods with simulation tools to find an optimal design with minimal building mass subject to building regulations. However, structural engineers in practice often avoid optimization and compromise on a suboptimal design for the majority of buildings, due to the large size of the design space, the iterative nature of the optimization methods, and the slow simulation tools. In this work, we formulate the building structures as graphs and create an end-to-end pipeline that can learn to propose the optimal cross-sections of columns and beams by training together with a pre-trained differentiable structural simulator. The performance of the proposed structural designs is comparable to the ones optimized by genetic algorithm (GA), with all the constraints satisfied. The optimal structural design with the reduced the building mass can not only lower the material cost, but also decrease the carbon footprint.
Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task. We challenged students to design a house that consumed zero net energy as part of an introductory engineering technology undergraduate course. Using data from 128 students, along with the scikit-learn Python machine learning library, we tested our models using both total counts of design actions and sequences of design actions as inputs. We found that our models using early design sequence actions are particularly valuable for prediction. Our logistic regression model achieved a >60% chance of predicting if a student would succeed in designing a zero net energy house. Our results suggest that it would be feasible for Aladdin to provide useful feedback to students when they are approximately halfway through their design. Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.