Do you want to publish a course? Click here

Using Machine Learning to Predict Engineering Technology Students Success with Computer Aided Design

339   0   0.0 ( 0 )
 Added by Viranga Perera
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Computer-aided design (CAD) programs are essential to engineering as they allow for better designs through low-cost iterations. While CAD programs are typically taught to undergraduate students as a job skill, such software can also help students learn engineering concepts. A current limitation of CAD programs (even those that are specifically designed for educational purposes) is that they are not capable of providing automated real-time help to students. To encourage CAD programs to build in assistance to students, we used data generated from students using a free, open source CAD software called Aladdin to demonstrate how student data combined with machine learning techniques can predict how well a particular student will perform in a design task. We challenged students to design a house that consumed zero net energy as part of an introductory engineering technology undergraduate course. Using data from 128 students, along with the scikit-learn Python machine learning library, we tested our models using both total counts of design actions and sequences of design actions as inputs. We found that our models using early design sequence actions are particularly valuable for prediction. Our logistic regression model achieved a >60% chance of predicting if a student would succeed in designing a zero net energy house. Our results suggest that it would be feasible for Aladdin to provide useful feedback to students when they are approximately halfway through their design. Further improvements to these models could lead to earlier predictions and thus provide students feedback sooner to enhance their learning.



rate research

Read More

Engineering sketches form the 2D basis of parametric Computer-Aided Design (CAD), the foremost modeling paradigm for manufactured objects. In this paper we tackle the problem of learning based engineering sketch generation as a first step towards synthesis and composition of parametric CAD models. We propose two generative models, CurveGen and TurtleGen, for engineering sketch generation. Both models generate curve primitives without the need for a sketch constraint solver and explicitly consider topology for downstream use with constraints and 3D CAD modeling operations. We find in our perceptual evaluation using human subjects that both CurveGen and TurtleGen produce more realistic engineering sketches when compared with the current state-of-the-art for engineering sketch generation.
Computer-Aided Design (CAD) applications are used in manufacturing to model everything from coffee mugs to sports cars. These programs are complex and require years of training and experience to master. A component of all CAD models particularly difficult to make are the highly structured 2D sketches that lie at the heart of every 3D construction. In this work, we propose a machine learning model capable of automatically generating such sketches. Through this, we pave the way for developing intelligent tools that would help engineers create better designs with less effort. Our method is a combination of a general-purpose language modeling technique alongside an off-the-shelf data serialization protocol. We show that our approach has enough flexibility to accommodate the complexity of the domain and performs well for both unconditional synthesis and image-to-sketch translation.
We present a method for improving the efficiency and user experience of freeform illumination design with machine learning. By utilizing orthogonal polynomials to interface with artificial neural networks, we are able to generalize relationships between freeform surface shapes and design parameters. Then, by training the network to generalize the relationship between high-level design goals and final performance, we were able to transform what is traditionally a difficult and computationally intensive problem into a compact, user friendly form. The potential of the proposed method is demonstrated through the design of uniform square patterns from off-axis positions and rectangular patterns of tuneable aspect ratios and distances from the target.
91 - Kai-Hung Chang 2020
The structural design process for buildings is time-consuming and laborious. To automate this process, structural engineers combine optimization methods with simulation tools to find an optimal design with minimal building mass subject to building regulations. However, structural engineers in practice often avoid optimization and compromise on a suboptimal design for the majority of buildings, due to the large size of the design space, the iterative nature of the optimization methods, and the slow simulation tools. In this work, we formulate the building structures as graphs and create an end-to-end pipeline that can learn to propose the optimal cross-sections of columns and beams by training together with a pre-trained differentiable structural simulator. The performance of the proposed structural designs is comparable to the ones optimized by genetic algorithm (GA), with all the constraints satisfied. The optimal structural design with the reduced the building mass can not only lower the material cost, but also decrease the carbon footprint.
Structural engineering knowledge can be of significant importance to the architectural design team during the early design phase. However, architects and engineers do not typically work together during the conceptual phase; in fact, structural engineers are often called late into the process. As a result, updates in the design are more difficult and time-consuming to complete. At the same time, there is a lost opportunity for better design exploration guided by structural feedback. In general, the earlier in the design process the iteration happens, the greater the benefits in cost efficiency and informed de-sign exploration, which can lead to higher-quality creative results. In order to facilitate an informed exploration in the early design stage, we suggest the automation of fundamental structural engineering tasks and introduce ApproxiFramer, a Machine Learning-based system for the automatic generation of structural layouts from building plan sketches in real-time. The system aims to assist architects by presenting them with feasible structural solutions during the conceptual phase so that they proceed with their design with adequate knowledge of its structural implications. In this paper, we describe the system and evaluate the performance of a proof-of-concept implementation in the domain of orthogonal, metal, rigid structures. We trained a Convolutional Neural Net to iteratively generate structural design solutions for sketch-level building plans using a synthetic dataset and achieved an average error of 2.2% in the predicted positions of the columns.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا