No Arabic abstract
The Braess paradox is a counter-intuitive phenomenon whereby adding roads to a network results in higher travel time at equilibrium. In this paper we present an algorithm to detect the occurrence of this paradox in real-world networks with the help of an improved graph representation accounting for queues. The addition of queues to the network representation enables a closer match with real data. Moreover, we search for routes causing this phenomenon (Braess routes) rather than links, and advocate removing such routes virtually from navigation systems so that the associated links can continue to serve other routes. Our algorithm relies on a convex optimization problem utilizing Beckmann potentials for road links as well as queues, and results in a route reconfiguration with reduced delay. We assume the availability of historical data to build the optimization model. We also assume the existence of a centralized navigation system to manage the routing options and remove the Braess routes. The theoretical solution demonstrates up to 12% delay reduction in a network from Montgomery County, Maryland. We validate the improvement with simulations.
We propose a new algorithm for adversarial multi-armed bandits with unrestricted delays. The algorithm is based on a novel hybrid regularizer applied in the Follow the Regularized Leader (FTRL) framework. It achieves $mathcal{O}(sqrt{kn}+sqrt{Dlog(k)})$ regret guarantee, where $k$ is the number of arms, $n$ is the number of rounds, and $D$ is the total delay. The result matches the lower bound within constants and requires no prior knowledge of $n$ or $D$. Additionally, we propose a refined tuning of the algorithm, which achieves $mathcal{O}(sqrt{kn}+min_{S}|S|+sqrt{D_{bar S}log(k)})$ regret guarantee, where $S$ is a set of rounds excluded from delay counting, $bar S = [n]setminus S$ are the counted rounds, and $D_{bar S}$ is the total delay in the counted rounds. If the delays are highly unbalanced, the latter regret guarantee can be significantly tighter than the former. The result requires no advance knowledge of the delays and resolves an open problem of Thune et al. (2019). The new FTRL algorithm and its refined tuning are anytime and require no doubling, which resolves another open problem of Thune et al. (2019).
This paper presents an efficient suboptimal model predictive control (MPC) algorithm for nonlinear switched systems subject to minimum dwell time constraints (MTC). While MTC are required for most physical systems due to stability, power and mechanical restrictions, MPC optimization problems with MTC are challenging to solve. To efficiently solve such problems, the on-line MPC optimization problem is decomposed into a sequence of simpler problems, which include two nonlinear programs (NLP) and a rounding step, as typically done in mixed-integer optimal control (MIOC). Unlike the classical approach that embeds MTC in a mixed-integer linear program (MILP) with combinatorial constraints in the rounding step, our proposal is to embed the MTC in one of the NLPs using move blocking. Such a formulation can speedup on-line computations by employing recent move blocking algorithms for NLP problems and by using a simple sum-up-rounding (SUR) method for the rounding step. An explicit upper bound of the integer approximation error for the rounding step is given. In addition, a combined shrinking and receding horizon strategy is developed to satisfy closed-loop MTC. Recursive feasibility is proven using a $l$-step control invariant ($l$-CI) set, where $l$ is the minimum dwell time step length. An algorithm to compute $l$-CI sets for switched linear systems off-line is also presented. Numerical studies demonstrate the efficiency and effectiveness of the proposed MPC algorithm for switched nonlinear systems with MTC.
A benchmark for multi-UAV task assignment is presented in order to evaluate different algorithms. An extended Team Orienteering Problem is modeled for a kind of multi-UAV task assignment problem. Three intelligent algorithms, i.e., Genetic Algorithm, Ant Colony Optimization and Particle Swarm Optimization are implemented to solve the problem. A series of experiments with different settings are conducted to evaluate three algorithms. The modeled problem and the evaluation results constitute a benchmark, which can be used to evaluate other algorithms used for multi-UAV task assignment problems.
Motivated by applications in cyber security, we develop a simple game model for describing how a learning agents private information influences an observing agents inference process. The model describes a situation in which one of the agents (attacker) is deciding which of two targets to attack, one with a known reward and another with uncertain reward. The attacker receives a single private sample from the uncertain targets distribution and updates its belief of the target quality. The other agent (defender) knows the true rewards, but does not see the sample that the attacker has received. This leads to agents possessing asymmetric information: the attacker is uncertain over the parameter of the distribution, whereas the defender is uncertain about the observed sample. After the attacker updates its belief, both the attacker and the defender play a simultaneous move game based on their respective beliefs. We offer a characterization of the pure strategy equilibria of the game and explain how the players decisions are influenced by their prior knowledge and the payoffs/costs.
We provide a dynamic programming algorithm for the monitoring of a fragment of Timed Propositional Temporal Logic (TPTL) specifications. This fragment of TPTL, which is more expressive than Metric Temporal Logic, is characterized by independent time variables which enable the elicitation of complex real-time requirements. For this fragment, we provide an efficient polynomial time algorithm for off-line monitoring of finite traces. Finally, we provide experimental results on a prototype implementation of our tool in order to demonstrate the feasibility of using our tool in practical applications.