Do you want to publish a course? Click here

4D-XY Superfluid Transition and Dissipation in $^4$He Confined in Nanoporous Media

61   0   0.0 ( 0 )
 Added by Keiya Shirahama
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

$^4$He confined in nanoporous Gelsil glass is a unique, strongly correlated Bose system exhibiting quantum phase transition (QPT) by controlling pressure. Previous studies revealed that the QPT occurs with four - dimensional (4D) XY criticality, which appears in the zero-temperature limit of the superfluid density. However, the $P-T$ phase diagram also suggested that 4D XY nature appears at finite temperatures. Here, we have determined the critical exponent of the superfluid density of $^4$He in two Gelsil samples that have pore diameter to be about 3 nm, using a newly developed mechanical resonator technique. The critical exponent $zeta$ in the powerlaw fitting $rho_{mathrm s} propto left| 1 - T/T_{mathrm c} right| ^{zeta}$, where $T_{mathrm c}$ is the superfluid transition temperature, was found to be 1.0 $pm$ 0.1 for all pressures realized in this experiment, 0.1 $<$ $P$ $<$ 2.4 MPa. This value of $zeta$ gives a decisive evidence that the finite-temperature superfluid transition belongs to 4D XY universality class. The emergence of the 4D XY criticality is explained by the existence of many nanoscale superfluid droplets, the so called localized Bose - Einstein condensates (LBECs), above $T_{mathrm c}$. Due to the large energy cost for $^4$He atoms to move between the LBECs, the phase of the LBEC order parameters fluctuates not only in spatial (3D) but imaginary time ($+1$D) dimensions, resulting in the 4D XY criticality by a temperature near $T_{mathrm c}$, which is determined by the finite size of the system in the imaginary time dimension. Below $T_{mathrm c}$, macroscopic superfluidity grows in the nanopores of Gelsil by the alignment of the phases of the LBEC order parameters. An excess dissipation peak observed below $T_{mathrm c}$ is well explained by this phase matching process.



rate research

Read More

$^4$He confined in nanoporous media is a model Bose system that exhibits quantum phase transition (QPT) by varying pressure. We have precisely determined the critical exponent of the superfluid density of $^4$He in porous Gelsil glasses with pore size of 3.0 nm using the Helmholtz resonator technique. The critical exponent $zeta$ of the superfluid density was found to be 1.0 $pm$ 0.1 for the pressure range 0.1 < P < 2.4 MPa. This value provides decisive evidence that the finite-temperature superfluid transition belongs to the four-dimensional (4D) XY universality class, in contrast to the classical 3D XY one in bulk liquid 4He, in which $zeta$ = 0.67. The quantum critical behavior at a finite temperature is understood by strong phase fluctuation in local Bose-Einstein condensates above the superfluid transition temperature. $^4$He in nanoporous media is a unique example in which quantum criticality emerges not only at 0 K but at finite temperatures.
99 - J. Gao , W. Guo , S. Yui 2018
There are two commonly discussed forms of quantum turbulence in superfluid $^4$He above 1K: in one there is a random tangle of quantizes vortex lines, existing in the presence of a non-turbulent normal fluid; in the second there is a coupled turbulent motion of the two fluids, often exhibiting quasi-classical characteristics on scales larger than the separation between the quantized vortex lines in the superfluid component. The decay of vortex line density, $L$, in the former case is often described by the equation $dL/dt=-chi_2 (kappa/2pi)L^2$, where $kappa$ is the quantum of circulation, and $chi_2$ is a dimensionless parameter of order unity. The decay of total turbulent energy, $E$, in the second case is often characterized by an effective kinematic viscosity, $ u$, such that $dE/dt=- u kappa^2 L^2$. We present new values of $chi_2$ derived from numerical simulations and from experiment, which we compare with those derived from a theory developed by Vinen and Niemela. We summarise what is presently known about the values of $ u$ from experiment, and we present a brief introductory discussion of the relationship between $chi_2$ and $ u$, leaving a more detailed discussion to a later paper.
The ground state of $^4$He confined in a system with the topology of a cylinder can display properties of a solid, superfluid and liquid crystal. This phase, which we call compactified supersolid (CSS), originates from wrapping the basal planes of the bulk hcp solid into concentric cylindrical shells, with several central shells exhibiting superfluidity along the axial direction. Its main feature is the presence of a topological defect which can be viewed as a disclination with Frank index $n=1$ observed in liquid crystals, and which, in addition, has a superfluid core. The CSS as well as its transition to an insulating compactified solid with a very wide hysteresis loop are found by ab initio Monte Carlo simulations. A simple analytical model captures qualitatively correctly the main property of the CSS -- a gradual decrease of the superfluid response with increasing pressure.
Area laws were first discovered by Bekenstein and Hawking, who found that the entropy of a black hole grows proportional to its surface area, and not its volume. Entropy area laws have since become a fundamental part of modern physics, from the holographic principle in quantum gravity to ground state wavefunctions of quantum matter, where entanglement entropy is generically found to obey area law scaling. As no experiments are currently capable of directly probing the entanglement area law in naturally occurring many-body systems, evidence of its existence is based on studies of simplified theories. Using new exact microscopic numerical simulations of superfluid $^4$He, we demonstrate for the first time an area law scaling of entanglement entropy in a real quantum liquid in three dimensions. We validate the fundamental principles underlying its physical origin, and present an entanglement equation of state showing how it depends on the density of the superfluid.
We calculate the effect of a heat current on transporting $^3$He dissolved in superfluid $^4$He at ultralow concentration, as will be utilized in a proposed experimental search for the electric dipole moment of the neutron (nEDM). In this experiment, a phonon wind will generated to drive (partly depolarized) $^3$He down a long pipe. In the regime of $^3$He concentrations $tilde < 10^{-9}$ and temperatures $sim 0.5$ K, the phonons comprising the heat current are kept in a flowing local equilibrium by small angle phonon-phonon scattering, while they transfer momentum to the walls via the $^4$He first viscosity. On the other hand, the phonon wind drives the $^3$He out of local equilibrium via phonon-$^3$He scattering. For temperatures below $0.5$ K, both the phonon and $^3$He mean free paths can reach the centimeter scale, and we calculate the effects on the transport coefficients. We derive the relevant transport coefficients, the phonon thermal conductivity and the $^3$He diffusion constants from the Boltzmann equation. We calculate the effect of scattering from the walls of the pipe and show that it may be characterized by the average distance from points inside the pipe to the walls. The temporal evolution of the spatial distribution of the $^3$He atoms is determined by the time dependent $^3$He diffusion equation, which describes the competition between advection by the phonon wind and $^3$He diffusion. As a consequence of the thermal diffusivity being small compared with the $^3$He diffusivity, the scale height of the final $^3$He distribution is much smaller than that of the temperature gradient. We present exact solutions of the time dependent temperature and $^3$He distributions in terms of a complete set of normal modes.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا