No Arabic abstract
The case difference heuristic (CDH) approach is a knowledge-light method for learning case adaptation knowledge from the case base of a case-based reasoning system. Given a pair of cases, the CDH approach attributes the difference in their solutions to the difference in the problems they solve, and generates adaptation rules to adjust solutions accordingly when a retrieved case and new query have similar problem differences. As an alternative to learning adaptation rules, several researchers have applied neural networks to learn to predict solution differences from problem differences. Previous work on such approaches has assumed that the feature set describing problems is predefined. This paper investigates a two-phase process combining deep learning for feature extraction and neural network based adaptation learning from extracted features. Its performance is demonstrated in a regression task on an image data: predicting age given the image of a face. Results show that the combined process can successfully learn adaptation knowledge applicable to nonsymbolic differences in cases. The CBR system achieves slightly lower performance overall than a baseline deep network regressor, but better performance than the baseline on novel queries.
One of the emerging trends for sports analytics is the growing use of player and ball tracking data. A parallel development is deep learning predictive approaches that use vast quantities of data with less reliance on feature engineering. This paper applies recurrent neural networks in the form of sequence modeling to predict whether a three-point shot is successful. The models are capable of learning the trajectory of a basketball without any knowledge of physics. For comparison, a baseline static machine learning model with a full set of features, such as angle and velocity, in addition to the positional data is also tested. Using a dataset of over 20,000 three pointers from NBA SportVu data, the models based simply on sequential positional data outperform a static feature rich machine learning model in predicting whether a three-point shot is successful. This suggests deep learning models may offer an improvement to traditional feature based machine learning methods for tracking data.
Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an excellent application to help coaches and players decide when and where to shoot. Its structure is particularly suitable for dealing with time series problems. BLSTM receives forward and backward information at the same time, while stacking multiple BLSTMs further increases the learning ability of the model. Combined with BLSTMs, MDN is used to generate a multi-modal distribution of outputs. Thus, the proposed model can, in principle, represent arbitrary conditional probability distributions of output variables. We tested our model with two experiments on three-pointer datasets from NBA SportVu data. In the hit-or-miss classification experiment, the proposed model outperformed other models in terms of the convergence speed and accuracy. In the trajectory generation experiment, eight model-generated trajectories at a given time closely matched real trajectories.
As deep learning continues to make progress for challenging perception tasks, there is increased interest in combining vision, language, and decision-making. Specifically, the Vision and Language Navigation (VLN) task involves navigating to a goal purely from language instructions and visual information without explicit knowledge of the goal. Recent successful approaches have made in-roads in achieving good success rates for this task but rely on beam search, which thoroughly explores a large number of trajectories and is unrealistic for applications such as robotics. In this paper, inspired by the intuition of viewing the problem as search on a navigation graph, we propose to use a progress monitor developed in prior work as a learnable heuristic for search. We then propose two modules incorporated into an end-to-end architecture: 1) A learned mechanism to perform backtracking, which decides whether to continue moving forward or roll back to a previous state (Regret Module) and 2) A mechanism to help the agent decide which direction to go next by showing directions that are visited and their associated progress estimate (Progress Marker). Combined, the proposed approach significantly outperforms current state-of-the-art methods using greedy action selection, with 5% absolute improvement on the test server in success rates, and more importantly 8% on success rates normalized by the path length. Our code is available at https://github.com/chihyaoma/regretful-agent .
Despite the success of deep neural networks (DNNs) in image classification tasks, the human-level performance relies on massive training data with high-quality manual annotations, which are expensive and time-consuming to collect. There exist many inexpensive data sources on the web, but they tend to contain inaccurate labels. Training on noisy labeled datasets causes performance degradation because DNNs can easily overfit to the label noise. To overcome this problem, we propose a noise-tolerant training algorithm, where a meta-learning update is performed prior to conventional gradient update. The proposed meta-learning method simulates actual training by generating synthetic noisy labels, and train the model such that after one gradient update using each set of synthetic noisy labels, the model does not overfit to the specific noise. We conduct extensive experiments on the noisy CIFAR-10 dataset and the Clothing1M dataset. The results demonstrate the advantageous performance of the proposed method compared to several state-of-the-art baselines.
Affective Computing is a rapidly growing field spurred by advancements in artificial intelligence, but often, held back by the inability to translate psychological theories of emotion into tractable computational models. To address this, we propose a probabilistic programming approach to affective computing, which models psychological-grounded theories as generative models of emotion, and implements them as stochastic, executable computer programs. We first review probabilistic approaches that integrate reasoning about emotions with reasoning about other latent mental states (e.g., beliefs, desires) in context. Recently-developed probabilistic programming languages offer several key desidarata over previous approaches, such as: (i) flexibility in representing emotions and emotional processes; (ii) modularity and compositionality; (iii) integration with deep learning libraries that facilitate efficient inference and learning from large, naturalistic data; and (iv) ease of adoption. Furthermore, using a probabilistic programming framework allows a standardized platform for theory-building and experimentation: Competing theories (e.g., of appraisal or other emotional processes) can be easily compared via modular substitution of code followed by model comparison. To jumpstart adoption, we illustrate our points with executable code that researchers can easily modify for their own models. We end with a discussion of applications and future directions of the probabilistic programming approach.