Do you want to publish a course? Click here

Applying Deep Bidirectional LSTM and Mixture Density Network for Basketball Trajectory Prediction

71   0   0.0 ( 0 )
 Added by Yu Zhao
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

Data analytics helps basketball teams to create tactics. However, manual data collection and analytics are costly and ineffective. Therefore, we applied a deep bidirectional long short-term memory (BLSTM) and mixture density network (MDN) approach. This model is not only capable of predicting a basketball trajectory based on real data, but it also can generate new trajectory samples. It is an excellent application to help coaches and players decide when and where to shoot. Its structure is particularly suitable for dealing with time series problems. BLSTM receives forward and backward information at the same time, while stacking multiple BLSTMs further increases the learning ability of the model. Combined with BLSTMs, MDN is used to generate a multi-modal distribution of outputs. Thus, the proposed model can, in principle, represent arbitrary conditional probability distributions of output variables. We tested our model with two experiments on three-pointer datasets from NBA SportVu data. In the hit-or-miss classification experiment, the proposed model outperformed other models in terms of the convergence speed and accuracy. In the trajectory generation experiment, eight model-generated trajectories at a given time closely matched real trajectories.



rate research

Read More

Short-term traffic forecasting based on deep learning methods, especially long short-term memory (LSTM) neural networks, has received much attention in recent years. However, the potential of deep learning methods in traffic forecasting has not yet fully been exploited in terms of the depth of the model architecture, the spatial scale of the prediction area, and the predictive power of spatial-temporal data. In this paper, a deep stacked bidirectional and unidirectional LSTM (SBU- LSTM) neural network architecture is proposed, which considers both forward and backward dependencies in time series data, to predict network-wide traffic speed. A bidirectional LSTM (BDLSM) layer is exploited to capture spatial features and bidirectional temporal dependencies from historical data. To the best of our knowledge, this is the first time that BDLSTMs have been applied as building blocks for a deep architecture model to measure the backward dependency of traffic data for prediction. The proposed model can handle missing values in input data by using a masking mechanism. Further, this scalable model can predict traffic speed for both freeway and complex urban traffic networks. Comparisons with other classical and state-of-the-art models indicate that the proposed SBU-LSTM neural network achieves superior prediction performance for the whole traffic network in both accuracy and robustness.
119 - Rajiv Shah , Rob Romijnders 2016
One of the emerging trends for sports analytics is the growing use of player and ball tracking data. A parallel development is deep learning predictive approaches that use vast quantities of data with less reliance on feature engineering. This paper applies recurrent neural networks in the form of sequence modeling to predict whether a three-point shot is successful. The models are capable of learning the trajectory of a basketball without any knowledge of physics. For comparison, a baseline static machine learning model with a full set of features, such as angle and velocity, in addition to the positional data is also tested. Using a dataset of over 20,000 three pointers from NBA SportVu data, the models based simply on sequential positional data outperform a static feature rich machine learning model in predicting whether a three-point shot is successful. This suggests deep learning models may offer an improvement to traditional feature based machine learning methods for tracking data.
Approximately, 50 million people in the world are affected by epilepsy. For patients, the anti-epileptic drugs are not always useful and these drugs may have undesired side effects on a patients health. If the seizure is predicted the patients will have enough time to take preventive measures. The purpose of this work is to investigate the application of bidirectional LSTM for seizure prediction. In this paper, we trained EEG data from canines on a double Bidirectional LSTM layer followed by a fully connected layer. The data was provided in the form of a Kaggle competition by American Epilepsy Society. The main task was to classify the interictal and preictal EEG clips. Using this model, we obtained an AUC of 0.84 on the test dataset. Which shows that our classifiers performance is above chance level on unseen data. The comparison with the previous work shows that the use of bidirectional LSTM networks can achieve significantly better results than SVM and GRU networks.
Pedestrian trajectory prediction for surveillance video is one of the important research topics in the field of computer vision and a key technology of intelligent surveillance systems. Social relationship among pedestrians is a key factor influencing pedestrian walking patterns but was mostly ignored in the literature. Pedestrians with different social relationships play different roles in the motion decision of target pedestrian. Motivated by this idea, we propose a Social Relationship Attention LSTM (SRA-LSTM) model to predict future trajectories. We design a social relationship encoder to obtain the representation of their social relationship through the relative position between each pair of pedestrians. Afterwards, the social relationship feature and latent movements are adopted to acquire the social relationship attention of this pair of pedestrians. Social interaction modeling is achieved by utilizing social relationship attention to aggregate movement information from neighbor pedestrians. Experimental results on two public walking pedestrian video datasets (ETH and UCY), our model achieves superior performance compared with state-of-the-art methods. Contrast experiments with other attention methods also demonstrate the effectiveness of social relationship attention.
112 - Yihui He , Jianren Wang 2019
Mistakes/uncertainties in object detection could lead to catastrophes when deploying robots in the real world. In this paper, we measure the uncertainties of object localization to minimize this kind of risk. Uncertainties emerge upon challenging cases like occlusion. The bounding box borders of an occluded object can have multiple plausible configurations. We propose a deep multivariate mixture of Gaussians model for probabilistic object detection. The covariances help to learn the relationship between the borders, and the mixture components potentially learn different configurations of an occluded part. Quantitatively, our model improves the AP of the baselines by 3.9% and 1.4% on CrowdHuman and MS-COCO respectively with almost no computational or memory overhead. Qualitatively, our model enjoys explainability since the resulting covariance matrices and the mixture components help measure uncertainties.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا