Do you want to publish a course? Click here

Parsimony-Enhanced Sparse Bayesian Learning for Robust Discovery of Partial Differential Equations

141   0   0.0 ( 0 )
 Added by Yongming Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Robust physics discovery is of great interest for many scientific and engineering fields. Inspired by the principle that a representative model is the one simplest possible, a new model selection criteria considering both models Parsimony and Sparsity is proposed. A Parsimony Enhanced Sparse Bayesian Learning (PeSBL) method is developed for discovering the governing Partial Differential Equations (PDEs) of nonlinear dynamical systems. Compared with the conventional Sparse Bayesian Learning (SBL) method, the PeSBL method promotes parsimony of the learned model in addition to its sparsity. In this method, the parsimony of model terms is evaluated using their locations in the prescribed candidate library, for the first time, considering the increased complexity with the power of polynomials and the order of spatial derivatives. Subsequently, the model parameters are updated through Bayesian inference with the raw data. This procedure aims to reduce the error associated with the possible loss of information in data preprocessing and numerical differentiation prior to sparse regression. Results of numerical case studies indicate that the governing PDEs of many canonical dynamical systems can be correctly identified using the proposed PeSBL method from highly noisy data (up to 50% in the current study). Next, the proposed methodology is extended for stochastic PDE learning where all parameters and modeling error are considered as random variables. Hierarchical Bayesian Inference (HBI) is integrated with the proposed framework for stochastic PDE learning from a population of observations. Finally, the proposed PeSBL is demonstrated for system response prediction with uncertainties and anomaly diagnosis. Codes of all demonstrated examples in this study are available on the website: https://github.com/ymlasu.



rate research

Read More

74 - Hao Xu , Dongxiao Zhang 2021
Data-driven discovery of partial differential equations (PDEs) has achieved considerable development in recent years. Several aspects of problems have been resolved by sparse regression-based and neural network-based methods. However, the performances of existing methods lack stability when dealing with complex situations, including sparse data with high noise, high-order derivatives and shock waves, which bring obstacles to calculating derivatives accurately. Therefore, a robust PDE discovery framework, called the robust deep learning-genetic algorithm (R-DLGA), that incorporates the physics-informed neural network (PINN), is proposed in this work. In the framework, a preliminary result of potential terms provided by the deep learning-genetic algorithm is added into the loss function of the PINN as physical constraints to improve the accuracy of derivative calculation. It assists to optimize the preliminary result and obtain the ultimately discovered PDE by eliminating the error compensation terms. The stability and accuracy of the proposed R-DLGA in several complex situations are examined for proof-and-concept, and the results prove that the proposed framework is able to calculate derivatives accurately with the optimization of PINN and possesses surprising robustness to complex situations, including sparse data with high noise, high-order derivatives, and shock waves.
Recently, researchers have utilized neural networks to accurately solve partial differential equations (PDEs), enabling the mesh-free method for scientific computation. Unfortunately, the network performance drops when encountering a high nonlinearity domain. To improve the generalizability, we introduce the novel approach of employing multi-task learning techniques, the uncertainty-weighting loss and the gradients surgery, in the context of learning PDE solutions. The multi-task scheme exploits the benefits of learning shared representations, controlled by cross-stitch modules, between multiple related PDEs, which are obtainable by varying the PDE parameterization coefficients, to generalize better on the original PDE. Encouraging the network pay closer attention to the high nonlinearity domain regions that are more challenging to learn, we also propose adversarial training for generating supplementary high-loss samples, similarly distributed to the original training distribution. In the experiments, our proposed methods are found to be effective and reduce the error on the unseen data points as compared to the previous approaches in various PDE examples, including high-dimensional stochastic PDEs.
We describe a neural-based method for generating exact or approximate solutions to differential equations in the form of mathematical expressions. Unlike other neural methods, our system returns symbolic expressions that can be interpreted directly. Our method uses a neural architecture for learning mathematical expressions to optimize a customizable objective, and is scalable, compact, and easily adaptable for a variety of tasks and configurations. The system has been shown to effectively find exact or approximate symbolic solutions to various differential equations with applications in natural sciences. In this work, we highlight how our method applies to partial differential equations over multiple variables and more complex boundary and initial value conditions.
The numerical solution of differential equations can be formulated as an inference problem to which formal statistical approaches can be applied. However, nonlinear partial differential equations (PDEs) pose substantial challenges from an inferential perspective, most notably the absence of explicit conditioning formula. This paper extends earlier work on linear PDEs to a general class of initial value problems specified by nonlinear PDEs, motivated by problems for which evaluations of the right-hand-side, initial conditions, or boundary conditions of the PDE have a high computational cost. The proposed method can be viewed as exact Bayesian inference under an approximate likelihood, which is based on discretisation of the nonlinear differential operator. Proof-of-concept experimental results demonstrate that meaningful probabilistic uncertainty quantification for the unknown solution of the PDE can be performed, while controlling the number of times the right-hand-side, initial and boundary conditions are evaluated. A suitable prior model for the solution of the PDE is identified using novel theoretical analysis of the sample path properties of Mat{e}rn processes, which may be of independent interest.
Partial differential equations (PDEs) fitting scientific data can represent physical laws with explainable mechanisms for various mathematically-oriented subjects. Most natural dynamics are expressed by PDEs with varying coefficients (PDEs-VC), which highlights the importance of PDE discovery. Previous algorithms can discover some simple instances of PDEs-VC but fail in the discovery of PDEs with coefficients of higher complexity, as a result of coefficient estimation inaccuracy. In this paper, we propose KO-PDE, a kernel optimized regression method that incorporates the kernel density estimation of adjacent coefficients to reduce the coefficient estimation error. KO-PDE can discover PDEs-VC on which previous baselines fail and is more robust against inevitable noise in data. In experiments, the PDEs-VC of seven challenging spatiotemporal scientific datasets in fluid dynamics are all discovered by KO-PDE, while the three baselines render false results in most cases. With state-of-the-art performance, KO-PDE sheds light on the automatic description of natural phenomenons using discovered PDEs in the real world.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا