Do you want to publish a course? Click here

Identification of Collapsed Carbon Nanotubes in High-Strength Fibres Spun from Compositionally Polydisperse Aerogels

78   0   0.0 ( 0 )
 Added by Juan J Vilatela
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Carbon Nanotubes (CNTs) of sufficiently large diameter and a few layers self-collapse into flat ribbons at atmospheric pressure, forming bundles of stacked CNTs that maximize packing and thus CNT interaction. Their improved stress transfer by shear makes collapsed CNTs ideal building blocks in macroscopic fibers of CNTs with high-performance longitudinal properties, particularly high tensile properties as reinforcing fibres. This work introduces cross-sectional transmission electron microscopy of FIB-milled samples as a way to univocally identify collapsed CNTs and to determine the full population of different CNTs in macroscopic fibers produced by spinning from floating catalyst chemical vapour deposition. We show that close proximity in bundles is a major driver for collapse and that CNT stoutness (number of layers/diameter), which dominates the collapse onset, is controlled by the growth promotor. Despite differences in decomposition route, different C precursors lead to similar distributions of the ratio layers/diameter. The synthesis conditions in this study give a maximum fraction of collapsed CNTs of 70$%$ when using selenium as promotor, corresponding to an average of $0.25 layer/nm$.

rate research

Read More

Single-walled carbon nanotubes (SWCNT) can be assembled into various macroscopic architectures, most notably continuous fibers and films, produced currently on a kilometer per day scale by floating catalyst chemical vapor depositionand spinning from an aerogel of CNTs. An attractive challenge is to produce continuous fibers with controlled molecular structure with respect to the diameter, chiral angle and ultimately(n,m)indices of the constituent SWCNT molecules. This work presents an extensive Raman spectroscopy and high resolution transmission electron microscopy study of SWCNT aerogels produced by the direct spinning method. By retaining the open structure of the SWCNT aerogel, we reveal the presence of both semiconducting and metallic SWCNTs and determine a full distribution of families of SWCNT grouped by optical transitions. The resulting distribution matches the chiral angle distribution obtained by electron microscopy and electron diffraction. The effect of SWCNT bundling on the Raman spectra, such as the G line shape due to plasmons activated in the far-infrared and semiconductor quenching, are also discussed. By avoiding full aggregation of the aerogel and applying the methodology introduced, rapid screening of molecular features can be achieved in large samples, making this protocol a useful analysis tool for engineered SWCNT fibers and related systems.
Ever since the discovery of carbon nanotubes (CNTs), it has long been a challenging goal to create macroscopically ordered assemblies, or crystals, of CNTs that preserve the one-dimensional quantum properties of individual CNTs on a macroscopic scale. Recently, a simple and well-controlled method was reported for producing wafer-scale crystalline films of highly aligned and densely packed CNTs through spontaneous global alignment that occurs during vacuum filtration [textit{Nat. Nanotechnol}. textbf{11}, 633 (2016)]. However, a full understanding of the mechanism of such global alignment has not been achieved. Here, we report results of a series of systematic experiments that demonstrate that the CNT alignment direction can be controlled by the surface morphology of the filter membrane used in the vacuum filtration process. More specifically, we found that the direction of parallel grooves pre-existing on the surface of the filter membrane dictates the direction of the resulting CNT alignment. Furthermore, we intentionally imprinted periodically spaced parallel grooves on a filter membranes using a diffraction grating, which successfully defined the direction of the global alignment of CNTs in a precise and reproducible manner.
Carbon Nanotubes (CNTs)-polymer composites are promising candidates for a myriad of applications. Ad-hoc CNTs-polymer composite fabrication techniques inherently pose roadblock to optimized processing resulting in microstructural defects i.e., void formation, poor interfacial adhesion, wettability, and agglomeration of CNTs inside the polymer matrix. Although improvement in the microstructures can be achieved via additional processing steps such as-mechanical methods and/or chemical functionalization, the resulting composites are somewhat limited in structural and functional performances. Here, we demonstrate that 3D printing technique like-direct ink writing offers improved processing of CNTs-polymer composites. The shear-induced flow of an engineered nanocomposite ink through the micronozzle offers some benefits including reducing the number of voids within the epoxy, improving CNTs dispersion and adhesion with epoxy, and partially aligns the CNTs. Such microstructural changes result in superior mechanical performance and heat transfer in the composites compared to their mold-casted counterparts. This work demonstrates the advantages of 3D printing over traditional fabrication methods, beyond the ability to rapidly fabricate complex architectures, to achieve improved processing dynamics for fabricating CNT-polymer nanocomposites with better structural and functional properties.
The controlled functionalization of single-walled carbon nanotubes with luminescent sp3-defects has created the potential to employ them as quantum-light sources in the near-infrared. For that, it is crucial to control their spectral diversity. The emission wavelength is determined by the binding configuration of the defects rather than the molecular structure of the attached groups. However, current functionalization methods produce a variety of binding configurations and thus emission wavelengths. We introduce a simple reaction protocol for the creation of only one type of luminescent defect in polymer-sorted (6,5) nanotubes, which is more red-shifted and exhibits longer photoluminescence lifetimes than the commonly obtained binding configurations. We demonstrate single-photon emission at room temperature and expand this functionalization to other polymer-wrapped nanotubes with emission further in the near-infrared. As the selectivity of the reaction with various aniline derivatives depends on the presence of an organic base we propose nucleophilic addition as the reaction mechanism.
YBCO fabrics composed of nanowires, produced by solution blow spinning (SBS) are so brittle that the Lorentz force produced by induced currents can be strong enough to damage them. On the other hand, it is known that silver addition improves the mechanical and flux pinning properties of ceramic superconductors. Thus, in this work, we show how we successfully obtained a polymeric precursor solution containing YBCO$+$Ag salts, which can be spun by the SBS route to produce ceramic samples. Yttrium, barium, copper, and silver metal acetates, and polyvinylpyrrolidone (PVP) (in a ratio of 5:1wt [PVP:acetates]) were dissolved in a solution with 61.5 wt% of methanol, 12 wt% of propionic acid, and 26.5 wt% of ammonium hydroxide, together with 6 wt% of PVP in solution. Three different amounts of silver (10 wt%, 20 wt%, and 30 wt%) were used in YBa$_2$Cu$_3$O$_{7-x}$. The TGA characterizations revealed a lowering of crystallization and partial melting temperatures by about SI{30}{celsius}. SEM images show that after burning out the polymer, a fabric composed of nanowires of diameters up to SI{380}{ ano metre} is produced. However, after the sintering process at SI{925}{celsius} for SI{1}{hour}, the nanowires shrink into a porous-like sample.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا