Do you want to publish a course? Click here

An exactly solvable problem of wave fronts and applications to the asymptotic theory

64   0   0.0 ( 0 )
 Added by Yurii V. Brezhnev
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This is the full and extended version of the brief note arXiv:1908.00938. A nontrivially solvable 4-dimensional Hamiltonian system is applied to the problem of wave fronts and to the asymptotic theory of partial differential equations. The Hamilton function we consider is $H(mathbf x,mathbf p)=sqrt{D(mathbf{x})}|mathbf{p}|$. Such Hamiltonians arise when describing the fronts of linear waves generated by a localized source in a basin with a variable depth. We consider two emph{realistic} types of bottom shape: 1) the depth of the basin is determined, in the polar coordinates, by the function $D(varrho,varphi)=(varrho^2+b)/(varrho^2+a)$ and 2) the depth function is $D(x,y)=(x^2+b)/(x^2+a)$. As an application, we construct the asymptotic solution to the wave equation with localized initial conditions and asymptotic solutions of the Helmholtz equation with a localized right-hand side.



rate research

Read More

225 - Maxim Olshanii 2015
In this article, we show that eigenenergies and eigenstates of a system consisting of four one-dimensional hard-core particles with masses $6m$, $2m$, $m$, and $3m$ in a hard-wall box can be found exactly using Bethe Ansatz. The Ansatz is based on the exceptional affine reflection group $tilde{F}_{4}$ associated with the symmetries and tiling properties of an octacube---a Platonic solid unique to four dimensions, with no three-dimensional analogues. We also uncover the Liouville integrability structure of our problem: the four integrals of motion in involution are identified as invariant polynomials of the finite reflection group $F_{4}$, taken as functions of the components of momenta.
101 - X. G. Wang , J. M. Zhang 2020
In an attempt to regularize a previously known exactly solvable model [Yang and Zhang, Eur. J. Phys. textbf{40}, 035401 (2019)], we find yet another exactly solvable toy model. The interesting point is that while the Hamiltonian of the model is parameterized by a function $f(x)$ defined on $[0, infty )$, its spectrum depends only on the end values of $f$, i.e., $f(0)$ and $f(infty )$. This model can serve as a good exercise in quantum mechanics at the undergraduate level.
We present an infinite-dimensional lattice of two-by-two plaquettes, the quadruple Bethe lattice, with Hubbard interaction and solve it exactly by means of the cluster dynamical mean-field theory. It exhibits a $d$-wave superconducting phase that is related to a highly degenerate point in the phase diagram of the isolated plaquette at that the groundstates of the particle number sectors $N=2,3,4$ cross. The superconducting gap is formed by the renormalized lower Slater peak of the correlated, hole-doped Mott insulator. We engineer parts of the interaction and find that pair hoppings between $X/Y$-momenta are the main two-particle correlations of the superconducting phase. The suppression of the superconductivity in the overdoped regime is caused by the diminishing of pair hopping correlations and in the underdoped regime by charge blocking. The optimal doping is $sim 0.15$ at which the underlying normal state shows a Lifshitz transition. The model allows for different intra- and inter-plaquette hoppings that we use to disentangle superconductivity from antiferromagnetism as the latter requires larger inter-plaquette hoppings.
The grand partition function of a model of confined quarks is exactly calculated at arbitrary temperatures and quark chemical potentials. The model is inspired by a softly BRST-broken version of QCD and possesses a quark mass function compatible with nonperturbative analyses of lattice simulations and Dyson-Schwinger equations. Even though the model is defined at tree level, we show that it produces a nontrivial and stable thermodynamic behaviour at any temperature or chemical potential. Results for the pressure, the entropy and the trace anomaly as a function of the temperature are qualitatively compatible with the effect of nonperturbative interactions as observed in lattice simulations. The finite density thermodynamics is also shown to contain nontrivial features, being far away from an ideal gas picture.
71 - K. L. Yang , J. M. Zhang 2019
The eigenstates and eigenenergies of a toy model, which arose in idealizing a local quenched tight-binding model in a previous publication [Zhang and Yang, EPL 114, 60001 (2016)], are solved analytically. This enables us to study its dynamics in a different way. This model can serve as a good exercise in quantum mechanics at the undergraduate level.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا