No Arabic abstract
In this article, we show that eigenenergies and eigenstates of a system consisting of four one-dimensional hard-core particles with masses $6m$, $2m$, $m$, and $3m$ in a hard-wall box can be found exactly using Bethe Ansatz. The Ansatz is based on the exceptional affine reflection group $tilde{F}_{4}$ associated with the symmetries and tiling properties of an octacube---a Platonic solid unique to four dimensions, with no three-dimensional analogues. We also uncover the Liouville integrability structure of our problem: the four integrals of motion in involution are identified as invariant polynomials of the finite reflection group $F_{4}$, taken as functions of the components of momenta.
This work analyzes the effects of cubic nonlinearities on certain resonant scattering anomalies associated with the dissolution of an embedded eigenvalue of a linear scattering system. These sharp peak-dip anomalies in the frequency domain are often called Fano resonances. We study a simple model that incorporates the essential features of this kind of resonance. It features a linear scatterer attached to a transmission line with a point-mass defect and coupled to a nonlinear oscillator. We prove two power laws in the small coupling <gamma> to 0 and small nonlinearity <mu> to 0 regime. The asymptotic relation <mu> ~ C<gamma>^4 characterizes the emergence of a small frequency interval of triple harmonic solutions near the resonant frequency of the oscillator. As the nonlinearity grows or the coupling diminishes, this interval widens and, at the relation <mu> ~ C<gamma>^2, merges with another evolving frequency interval of triple harmonic solutions that extends to infinity. Our model allows rigorous computation of stability in the small <mu> and <gamma> limit. In the regime of triple harmonic solutions, those with largest and smallest response of the oscillator are linearly stable and the solution with intermediate response is unstable.
In an attempt to regularize a previously known exactly solvable model [Yang and Zhang, Eur. J. Phys. textbf{40}, 035401 (2019)], we find yet another exactly solvable toy model. The interesting point is that while the Hamiltonian of the model is parameterized by a function $f(x)$ defined on $[0, infty )$, its spectrum depends only on the end values of $f$, i.e., $f(0)$ and $f(infty )$. This model can serve as a good exercise in quantum mechanics at the undergraduate level.
We introduce and study the adiabatic dynamics of free-fermion models subject to a local Lindblad bath and in the presence of a time-dependent Hamiltonian. The merit of these models is that they can be solved exactly, and will help us to study the interplay between non-adiabatic transitions and dissipation in many-body quantum systems. After the adiabatic evolution, we evaluate the excess energy (average value of the Hamiltonian) as a measure of the deviation from reaching the target final ground state. We compute the excess energy in a variety of different situations, where the nature of the bath and the Hamiltonian is modified. We find a robust evidence of the fact that an optimal working time for the quantum annealing protocol emerges as a result of the competition between the non-adiabatic effects and the dissipative processes. We compare these results with matrix-product-operator simulations of an Ising system and show that the phenomenology we found applies also for this more realistic case.
The grand partition function of a model of confined quarks is exactly calculated at arbitrary temperatures and quark chemical potentials. The model is inspired by a softly BRST-broken version of QCD and possesses a quark mass function compatible with nonperturbative analyses of lattice simulations and Dyson-Schwinger equations. Even though the model is defined at tree level, we show that it produces a nontrivial and stable thermodynamic behaviour at any temperature or chemical potential. Results for the pressure, the entropy and the trace anomaly as a function of the temperature are qualitatively compatible with the effect of nonperturbative interactions as observed in lattice simulations. The finite density thermodynamics is also shown to contain nontrivial features, being far away from an ideal gas picture.
Non-hermitian, $mathcal{PT}$-symmetric Hamiltonians, experimentally realized in optical systems, accurately model the properties of open, bosonic systems with balanced, spatially separated gain and loss. We present a family of exactly solvable, two-dimensional, $mathcal{PT}$ potentials for a non-relativistic particle confined in a circular geometry. We show that the $mathcal{PT}$ symmetry threshold can be tuned by introducing a second gain-loss potential or its hermitian counterpart. Our results explicitly demonstrate that $mathcal{PT}$ breaking in two dimensions has a rich phase diagram, with multiple re-entrant $mathcal{PT}$ symmetric phases.