No Arabic abstract
In this work we ask how an Unruh-DeWitt (UD) detector with harmonic oscillator internal degrees of freedom $Q$ measuring an evolving quantum matter field $Phi(bm{x}, t)$ in an expanding universe with scale factor $a(t)$ responds. We investigate the detectors response which contains non-Markovian information about the quantum field squeezed by the dynamical spacetime. The challenge is in the memory effects accumulated over the evolutionary history. We first consider a detector $W$, the `textsl{Witness}, which co-existed and evolved with the quantum field from the beginning. We derive a nonMarkovian quantum Langevin equation for the detectors $Q$ by integrating over the squeezed quantum field. The solution of this integro-differential equation would answer our question, in principle, but very challenging, in practice. Striking a compromise, we then ask, to what extent can a detector $D$ introduced at late times, called the `textsl{Detective}, decipher past memories. This situation corresponds to many cosmological experiments today probing specific stages in the past, such as COBE targeting activities at the surface of last scattering. Somewhat surprisingly we show that it is possible to retrieve to some degree certain global physical quantities, such as the resultant squeezing, particles created, quantum coherence and correlations. The reason is because the quantum field has all the fine-grained information from the beginning in how it was driven by the cosmic dynamics $a(t)$. How long the details of past history can persist in the quantum field depends on the memory time. The fact that a squeezed field cannot come to complete equilibrium under constant driving, as in an evolving spacetime, actually helps to retain the memory. We discuss interesting features and potentials of this `textit{archaeological} perspective toward cosmological issues.
We study, in the framework of open quantum systems, the entanglement dynamics for a quantum system composed of two uniformly accelerated Unruh-Dewitt detectors interacting with a bath of massive scalar fields in the Minkowski vacuum. We find that the entanglement evolution for the quantum system coupled with massive fields is always slower compared with that of the one coupled with massless fields, and this time-delay effect brought by the field being massive can however be counteracted by a large enough acceleration, in contrast to the case of a static quantum system in a thermal bath, where this time delay is not affected by the temperature. Remarkably, the maximal concurrence of the quantum system generated during evolution may increase with acceleration for any inter-detector separation while that for static ones in a thermal bath decreases monotonically with temperature, and this can be considered as an anti-Unruh effect in terms of the entanglement generated.
In this paper, we study the changes of quantum effects of a growing universe by using Wheeler-DeWitt equation (WDWE) together with de Broglie-Bohm quantum trajectory approach. From WDWE, we obtain the quantum modified Friedmann equations which have additional terms called quantum potential compared to standard Friedmann equations. The quantum potential governs the behavior of the early universe, providing energy for inflation, while it decreases rapidly as the universe grows. The quantum potential of the grown-up universe is much smaller than that required for accelerating expansion. This indicates that quantum effects of our universe cannot be treated as a candidate for dark energy.
We study the dynamics of steering between two correlated Unruh-Dewitt detectors when one of them locally interacts with external scalar field via different quantifiers. We find that the quantum steering, either measured by the entropic steering inequality or the Cavalcanti-Jones-Wiseman-Reid inequality, is fragile under the influence of Unruh thermal noise. The quantum steering is found always asymmetric and the asymmetry is extremely sensitive to the initial state parameter. In addition, the steering-type quantum correlations experience sudden death for some accelerations, which are quite different from the behaviors of other quantum correlations in the same system. It is worth noting that the domination value of the tight quantum steering exists a transformation point with increasing acceleration. We also find that the robustness of quantum steerability under the Unruh thermal noise can be realized by choosing the smallest energy gap in the detectors.
We study the anti-Unruh effect for an entangled quantum state in reference to the counterintuitive cooling previously pointed out for an accelerated detector coupled to the vacuum. We show that quantum entanglement for an initially entangled (spacelike separated) bipartite state can be increased when either a detector attached to one particle is accelerated or both detectors attached to the two particles are in simultaneous accelerations. However, if the two particles (e.g., detectors for the bipartite system) are not initially entangled, entanglement cannot be created by the anti-Unruh effect. Thus, within certain parameter regime, this work shows that the anti-Unruh effect can be viewed as an amplification mechanism for quantum entanglement.
So far none of attempts to quantize gravity has led to a satisfactory model that not only describe gravity in the realm of a quantum world, but also its relation to elementary particles and other fundamental forces. Here we outline preliminary results for a model of quantum universe, in which gravity is fundamentally and by construction quantic. The model is based on 3 well motivated assumptions with compelling observational and theoretical evidence: quantum mechanics is valid at all scales; quantum systems are described by their symmetries; Universe has infinite independent degrees of freedom. The last assumption means that the Hilbert space of the Universe has $SU(Nrightarrow infty) cong text{area preserving Diff.} (S_2)$ symmetry, which is parameterized by two angular variables. We show that in absence of a background spacetime, this Universe is trivial and static. Nonetheless, quantum fluctuations break the symmetry and divide the Universe to subsystems. When a subsystem is singled out as reference - {it observer} - and another as {it clock}, two more continuous parameters arise, which can be interpreted as distance and time. We identify the classical spacetime with parameter space of the Hilbert space of the Universe. Therefore, its quantization is meaningless. In this view, the Einstein equation presents the projection of quantum dynamics in the Hilbert space into its parameter space. Finite dimensional symmetries of elementary particles emerge as a consequence of symmetry breaking when the Universe is divided to subsystems/particles without having any implication for the infinite dimensional symmetry and its associated interaction percived as gravity. This explains why gravity is a universal force.