Do you want to publish a course? Click here

Dust in the Wind with Resonant Drag Instabilities: I. The Dynamics of Dust-Driven Outflows in GMCs and HII Regions

186   0   0.0 ( 0 )
 Added by Philip Hopkins
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Radiation-dust driven outflows, where radiation pressure on dust grains accelerates gas, occur in many astrophysical environments. Almost all previous numerical studies of these systems have assumed that the dust was perfectly-coupled to the gas. However, it has recently been shown that the dust in these systems is unstable to a large class of resonant drag instabilities (RDIs) which de-couple the dust and gas dynamics and could qualitatively change the nonlinear outcome of these outflows. We present the first simulations of radiation-dust driven outflows in stratified, inhomogeneous media, including explicit grain dynamics and a realistic spectrum of grain sizes and charge, magnetic fields and Lorentz forces on grains (which dramatically enhance the RDIs), Coulomb and Epstein drag forces, and explicit radiation transport allowing for different grain absorption and scattering properties. In this paper we consider conditions resembling giant molecular clouds (GMCs), HII regions, and distributed starbursts, where optical depths are modest ($lesssim 1$), single-scattering effects dominate radiation-dust coupling, Lorentz forces dominate over drag on grains, and the fastest-growing RDIs are similar, such as magnetosonic and fast-gyro RDIs. These RDIs generically produce strong size-dependent dust clustering, growing nonlinear on timescales that are much shorter than the characteristic times of the outflow. The instabilities produce filamentary and plume-like or horsehead nebular morphologies that are remarkably similar to observed dust structures in GMCs and HII regions. Additionally, in some cases they strongly alter the magnetic field structure and topology relative to filaments. Despite driving strong micro-scale dust clumping which leaves some gas behind, an order-unity fraction of the gas is always efficiently entrained by dust.



rate research

Read More

63 - V.V. Zhuravlev 2020
Damping of the previously discovered resonant drag instability (RDI) of dust streaming in protoplanetary disc is studied using the local approach to dynamics of gas-dust perturbations in the limit of the small dust fraction. Turbulence in a disc is represented by the effective viscosity and diffusivity in equations of motion for gas and dust, respectively. In the standard case of the Schmidt number (ratio of the effective viscosity to diffusivity) Sc = 1, the reduced description of RDI in terms of the inertial wave (IW) and the streaming dust wave (SDW) falling in resonance with each other reveals that damping solution differs from the inviscid solution simply by adding the characteristic damping frequency to its growth rate. RDI is fully suppressed at the threshold viscosity, which is estimated analytically, first, for radial drift, next, for vertical settling of dust, and at last, in the case of settling combined with radial drift of the dust. In the last case, RDI survives up to the highest threshold viscosity, with a greater excess for smaller solids. Once Sc eq 1, a new instability specific for dissipative perturbations on the dust settling background emerges. This instability of the quasi-resonant nature is referred to as settling viscous instability (SVI). The mode akin to SDW (IW) becomes growing in a region of long waves provided that Sc > 1 (Sc < 1). SVI leads to an additional increase of the threshold viscosity.
The generation of infrared (IR) radiation and the observed IR intensity distribution at wavelengths of 8, 24, and 100 micron in the ionized hydrogen region around a young, massive star is investigated. The evolution of the HII region is treated using a self-consistent chemical-dynamical model in which three dust populations are included -- large silicate grains, small graphite grains, and polycyclic, aromatic hydrocarbons (PAHs). A radiative transfer model taking into account stochastic heating of small grains and macromolecules is used to model the IR spectral energy distribution. The computational results are compared with Spitzer and Herschel observations of the RCW 120 nebula. The contributions of collisions with gas particles and the radiation field of the star to stochastic heating of small grains are investigated. It is shown that a model with a homogeneous PAH content cannot reproduce the ring-like IR-intensity distribution at 8 micron. A model in which PAHs are destroyed in the ionized region provides a means to explain this intensity distribution. This model is in agreement with observations for realistic characteristic destruction times for the PAHs.
The conversion of the IR emission into star formation rate can be strongly dependent on the physical properties of the dust, which are affected by the environmental conditions where the dust is embedded. We study here the dust properties of a set of HII regions in the Local Group Galaxy M33 presenting different spatial configurations between the stars, gas and dust to understand the dust evolution under different environments. We model the SED of each region using the DustEM tool and obtain the mass relative to hydrogen for Very Small Grains (YVSG), Polycyclic Aromatic Hydrocarbons (YPAH) and Big Grains (YBG). The relative mass of the VSGs (YVSG/YTOT) is a factor of 1.7 higher for HII regions classified as filled and mixed than for regions presenting a shell structure. The enhancement of VSGs within NGC 604 and NGC 595 is correlated to expansive gas structures with velocities greater than 50 km/s. The gas-to-dust ratio derived for the HII regions in our sample exhibits two regimes related to the HI-H2 transition of the ISM. Regions corresponding to the HI diffuse regime present a gas-to-dust ratio compatible with the expected value if we assume that the gas-to-dust ratio scales linearly with metallicity, while regions corresponding to a H2 molecular phase present a flatter dust-gas surface density distribution. The fraction of VSGs can be affected by the conditions of the interstellar environment: strong shocks of 50-90 km/s existing in the interior of the most luminous HII regions can lead to fragmentation of BGs into smaller ones, while the more evolved shell and clear shell objects provide a more quiescent environment where reformation of dust BG grains might occur. The gas-to-dust variations found in this analysis might imply that grain coagulation and/or gas-phase metals incorporation to the dust mass is occurring in the interior of the HII regions in M33.
120 - F. Marin , R. W. Goosmann 2013
In this first research note of a series of two, we conduct optical/UV investigations of the spectropolarimetric signatures emerging from the structure of quasars (Elvis 2000) applied to a purely theoretical, dusty model. We aim to explore the similarities/differences between an absorbing, disk-born outflow and the usual dusty torus that is supposed to hide the internal regions of active galactic nuclei (AGN). Using radiative transfer Monte Carlo simulations, we compute the continuum polarization signatures emerging from the model setup of Elvis (2000). We find that a dust-filled outflow produces very low amount of wavelength-depend polarization degrees, associated with a photon polarization angle perpendicular to the projected symmetry axis of the model. The polarization percentages are ten times lower than what can be produced by a toroidal model, with a maximal polarization degree found for intermediate viewing angle (i.e. when the observers line-of-sight crosses the outflowing material). The structure for quasars unsuccessfully blocks the radiation from the central irradiating source and shows a spectropolarimetric behavior that cannot be conciliated with observations. Either a new set of morphological parameters or different optical thickness must be considered.
104 - Zitao Hu , Xue-Ning Bai 2021
It has recently been shown that the inner region of protoplanetary disks (PPDs) is governed by wind-driven accretion, and the resulting accretion flow showing complex vertical profiles. Such complex flow structures are further enhanced due to the Hall effect, especially when the background magnetic field is aligned with disk rotation. We investigate how such flow structures impact global dust transport via Monte-Carlo simulations, focusing on two scenarios. In the first scenario, the toroidal magnetic field is maximized in the miplane, leading to accretion and decretion flows above and below. In the second scenario, the toroidal field changes sign across the midplane, leading to an accretion flow at the disk midplane, with decretion flows above and below. We find that in both cases, the contribution from additional gas flows can still be accurately incorporated into the advection-diffusion framework for vertically-integrated dust transport, with enhanced dust radial diffusion up to an effective $alpha^{rm eff}sim10^{-2}$ for strongly coupled dust, even when background turbulence is weak $alpha<10^{-4}$. Dust radial drift is also modestly enhanced in the second scenario. We provide a general analytical theory that accurately reproduces our simulation results, thus establishing a framework to model global dust transport that realistically incorporates vertical gas flow structures. We also note that the theory is equally applicable to the transport of chemical species.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا