Do you want to publish a course? Click here

A Graph-based Approach for Mitigating Multi-sided Exposure Bias in Recommender Systems

123   0   0.0 ( 0 )
 Added by Masoud Mansoury
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Fairness is a critical system-level objective in recommender systems that has been the subject of extensive recent research. A specific form of fairness is supplier exposure fairness where the objective is to ensure equitable coverage of items across all suppliers in recommendations provided to users. This is especially important in multistakeholder recommendation scenarios where it may be important to optimize utilities not just for the end-user, but also for other stakeholders such as item sellers or producers who desire a fair representation of their items. This type of supplier fairness is sometimes accomplished by attempting to increasing aggregate diversity in order to mitigate popularity bias and to improve the coverage of long-tail items in recommendations. In this paper, we introduce FairMatch, a general graph-based algorithm that works as a post processing approach after recommendation generation to improve exposure fairness for items and suppliers. The algorithm iteratively adds high quality items that have low visibility or items from suppliers with low exposure to the users final recommendation lists. A comprehensive set of experiments on two datasets and comparison with state-of-the-art baselines show that FairMatch, while significantly improves exposure fairness and aggregate diversity, maintains an acceptable level of relevance of the recommendations.



rate research

Read More

373 - Shoujin Wang , Liang Hu , Yan Wang 2021
Recent years have witnessed the fast development of the emerging topic of Graph Learning based Recommender Systems (GLRS). GLRS employ advanced graph learning approaches to model users preferences and intentions as well as items characteristics for recommendations. Differently from other RS approaches, including content-based filtering and collaborative filtering, GLRS are built on graphs where the important objects, e.g., users, items, and attributes, are either explicitly or implicitly connected. With the rapid development of graph learning techniques, exploring and exploiting homogeneous or heterogeneous relations in graphs are a promising direction for building more effective RS. In this paper, we provide a systematic review of GLRS, by discussing how they extract important knowledge from graph-based representations to improve the accuracy, reliability and explainability of the recommendations. First, we characterize and formalize GLRS, and then summarize and categorize the key challenges and main progress in this novel research area. Finally, we share some new research directions in this vibrant area.
Recent studies have shown that providing personalized explanations alongside recommendations increases trust and perceived quality. Furthermore, it gives users an opportunity to refine the recommendations by critiquing parts of the explanations. On one hand, current recommender systems model the recommendation, explanation, and critiquing objectives jointly, but this creates an inherent trade-off between their respective performance. On the other hand, although recent latent linear critiquing approaches are built upon an existing recommender system, they suffer from computational inefficiency at inference due to the objective optimized at each conversations turn. We address these deficiencies with M&Ms-VAE, a novel variational autoencoder for recommendation and explanation that is based on multimodal modeling assumptions. We train the model under a weak supervision scheme to simulate both fully and partially observed variables. Then, we leverage the generalization ability of a trained M&Ms-VAE model to embed the user preference and the critique separately. Our works most important innovation is our critiquing module, which is built upon and trained in a self-supervised manner with a simple ranking objective. Experiments on four real-world datasets demonstrate that among state-of-the-art models, our system is the first to dominate or match the performance in terms of recommendation, explanation, and multi-step critiquing. Moreover, M&Ms-VAE processes the critiques up to 25.6x faster than the best baselines. Finally, we show that our model infers coherent joint and cross generation, even under weak supervision, thanks to our multimodal-based modeling and training scheme.
Modern recommender systems (RS) work by processing a number of signals that can be inferred from large sets of user-item interaction data. The main signal to analyze stems from the raw matrix that represents interactions. However, we can increase the performance of RS by considering other kinds of signals like the context of interactions, which could be, for example, the time or date of the interaction, the user location, or sequential data corresponding to the historical interactions of the user with the system. These complex, context-based interaction signals are characterized by a rich relational structure that can be represented by a multi-partite graph. Graph Convolutional Networks (GCNs) have been used successfully in collaborative filtering with simple user-item interaction data. In this work, we generalize the use of GCNs for N-partite graphs by considering N multiple context dimensions and propose a simple way for their seamless integration in modern deep learning RS architectures. More specifically, we define a graph convolutional embedding layer for N-partite graphs that processes user-item-context interactions, and constructs node embeddings by leveraging their relational structure. Experiments on several datasets from recommender systems to drug re-purposing show the benefits of the introduced GCN embedding layer by measuring the performance of different context-enriched tasks.
Owing to the superiority of GNN in learning on graph data and its efficacy in capturing collaborative signals and sequential patterns, utilizing GNN techniques in recommender systems has gain increasing interests in academia and industry. In this survey, we provide a comprehensive review of the most recent works on GNN-based recommender systems. We proposed a classification scheme for organizing existing works. For each category, we briefly clarify the main issues, and detail the corresponding strategies adopted by the representative models. We also discuss the advantages and limitations of the existing strategies. Furthermore, we suggest several promising directions for future researches. We hope this survey can provide readers with a general understanding of the recent progress in this field, and shed some light on future developments.
Collaborative filtering, a widely-used recommendation technique, predicts a users preference by aggregating the ratings from similar users. As a result, these measures cannot fully utilize the rating information and are not suitable for real world sparse data. To solve these issues, we propose a novel user distance measure named Preference Movers Distance (PMD) which makes full use of all ratings made by each user. Our proposed PMD can properly measure the distance between a pair of users even if they have no co-rated items. We show that this measure can be cast as an instance of the Earth Movers Distance, a well-studied transportation problem for which several highly efficient solvers have been developed. Experimental results show that PMD can help achieve superior recommendation accuracy than state-of-the-art methods, especially when training data is very sparse.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا