Do you want to publish a course? Click here

Dynamically Generated Logical Qubits

449   0   0.0 ( 0 )
 Added by Matthew Hastings
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a quantum error correcting code with dynamically generated logical qubits. When viewed as a subsystem code, the code has no logical qubits. Nevertheless, our measurement patterns generate logical qubits, allowing the code to act as a fault-tolerant quantum memory. Our particular code gives a model very similar to the two-dimensional toric code, but each measurement is a two-qubit Pauli measurement.



rate research

Read More

Future quantum computers will require quantum error correction for faithful operation. The correction capabilities come with an overhead for performing fault-tolerant logical operations on the encoded qubits. One of the most resource efficient ways to implement logical operations is lattice surgery, where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here, we report on the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.
We show that the $Xi (1690)$ resonance can be dynamically generated in the $s$-wave $bar{K} Sigma$-$bar{K} Lambda$-$pi Xi$-$eta Xi$ coupled-channels chiral unitary approach. In our model, the $Xi (1690)$ resonance appears near the $bar{K} Sigma$ threshold as a $bar{K} Sigma$ molecular state and the experimental data are reproduced well. We discuss properties of the dynamically generated $Xi (1690)$.
We discuss two methods to encode one qubit into six physical qubits. Each of our two examples corrects an arbitrary single-qubit error. Our first example is a degenerate six-qubit quantum error-correcting code. We explicitly provide the stabilizer generators, encoding circuit, codewords, logical Pauli operators, and logical CNOT operator for this code. We also show how to convert this code into a non-trivial subsystem code that saturates the subsystem Singleton bound. We then prove that a six-qubit code without entanglement assistance cannot simultaneously possess a Calderbank-Shor-Steane (CSS) stabilizer and correct an arbitrary single-qubit error. A corollary of this result is that the Steane seven-qubit code is the smallest single-error correcting CSS code. Our second example is the construction of a non-degenerate six-qubit CSS entanglement-assisted code. This code uses one bit of entanglement (an ebit) shared between the sender and the receiver and corrects an arbitrary single-qubit error. The code we obtain is globally equivalent to the Steane seven-qubit code and thus corrects an arbitrary error on the receivers half of the ebit as well. We prove that this code is the smallest code with a CSS structure that uses only one ebit and corrects an arbitrary single-qubit error on the senders side. We discuss the advantages and disadvantages for each of the two codes.
We consider a notion of relative homology (and cohomology) for surfaces with two types of boundaries. Using this tool, we study a generalization of Kitaevs code based on surfaces with mixed boundaries. This construction includes both Bravyi and Kitaevs and Freedman and Meyers extension of Kitaevs toric code. We argue that our generalization offers a denser storage of quantum information. In a planar architecture, we obtain a three-fold overhead reduction over the standard architecture consisting of a punctured square lattice.
Recent progress in nonlinear optical materials and microresonators has brought quantum computing with bulk optical nonlinearities into the realm of possibility. This platform is of great interest, not only because photonics is an obvious choice for quantum networks, but also because it may be the only feasible route to quantum information processing at room temperature. We introduce a paradigm for room-temperature photonic quantum logic that significantly simplifies the realization of various quantum circuits, and in particular, of error correction. It uses only the strongest available bulk nonlinearity, namely the $chi^{(2)}$ nonlinear susceptibility. The key element is a three-mode resonator that implements programmable bosonic quantum logic gates. We show that just two of these elements suffice for a complete, compact error-correction circuit on a bosonic code, without the need for measurement or feed-forward control. An extrapolation of current progress in nonlinear optical materials and photonic circuits indicates that such circuitry should be achievable within the next decade.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا