Do you want to publish a course? Click here

Entangling logical qubits with lattice surgery

83   0   0.0 ( 0 )
 Added by Nicolai Friis
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Future quantum computers will require quantum error correction for faithful operation. The correction capabilities come with an overhead for performing fault-tolerant logical operations on the encoded qubits. One of the most resource efficient ways to implement logical operations is lattice surgery, where groups of physical qubits, arranged on lattices, can be merged and split to realize entangling gates and teleport logical information. Here, we report on the experimental realization of lattice surgery between two topologically encoded qubits in a 10-qubit ion trap quantum information processor. In particular, we demonstrate entanglement between two logical qubits and we implement logical state teleportation.



rate research

Read More

We present a quantum error correcting code with dynamically generated logical qubits. When viewed as a subsystem code, the code has no logical qubits. Nevertheless, our measurement patterns generate logical qubits, allowing the code to act as a fault-tolerant quantum memory. Our particular code gives a model very similar to the two-dimensional toric code, but each measurement is a two-qubit Pauli measurement.
We propose a scheme to implement variable coupling between two flux qubits using the screening current response of a dc Superconducting QUantum Interference Device (SQUID). The coupling strength is adjusted by the current bias applied to the SQUID and can be varied continuously from positive to negative values, allowing cancellation of the direct mutual inductance between the qubits. We show that this variable coupling scheme permits efficient realization of universal quantum logic. The same SQUID can be used to determine the flux states of the qubits.
All identical particles are inherently correlated from the outset, regardless of how far apart their creation took place. In this paper, this fact is used for extraction of entanglement from independent particles unaffected by any interactions. Specifically, we are concerned with operational schemes for generation of all tripartite entangled states, essentially the GHZ state and the W state, which prevent the particles from touching one another over the entire evolution. The protocols discussed in the paper require only three particles in linear optical setups with equal efficiency for boson, fermion or anyon statistics. Within this framework indistinguishability of particles presents itself as a useful resource of entanglement accessible for practical applications.
We describe and implement a family of entangling gates activated by radio-frequency flux modulation applied to a tunable transmon that is statically coupled to a neighboring transmon. The effect of this modulation is the resonant exchange of photons directly between levels of the two-transmon system, obviating the need for mediating qubits or resonator modes and allowing for the full utilization of all qubits in a scalable architecture. The resonance condition is selective in both the frequency and amplitude of modulation and thus alleviates frequency crowding. We demonstrate the use of three such resonances to produce entangling gates that enable universal quantum computation: one iSWAP gate and two distinct controlled Z gates. We report interleaved randomized benchmarking results indicating gate error rates of 6% for the iSWAP (duration 135ns) and 9% for the controlled Z gates (durations 175 ns and 270 ns), limited largely by qubit coherence.
A quantum algorithm can be decomposed into a sequence consisting of single qubit and 2-qubit entangling gates. To optimize the decomposition and achieve more efficient construction of the quantum circuit, we can replace multiple 2-qubit gates with a single global entangling gate. Here, we propose and implement a scalable scheme to realize the global entangling gates on multiple $yb$ ion qubits by coupling to multiple motional modes through external fields. Such global gates require simultaneously decoupling of multiple motional modes and balancing of the coupling strengths for all the qubit-pairs at the gate time. To satisfy the complicated requirements, we develop a trapped-ion system with fully-independent control capability on each ion, and experimentally realize the global entangling gates. As examples, we utilize them to prepare the Greenberger-Horne-Zeilinger (GHZ) states in a single entangling operation, and successfully show the genuine multi-partite entanglements up to four qubits with the state fidelities over $93.4%$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا