Do you want to publish a course? Click here

On the Estimation of Bivariate Return Curves for Extreme Values

78   0   0.0 ( 0 )
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the multivariate setting, defining extremal risk measures is important in many contexts, such as finance, environmental planning and structural engineering. In this paper, we review the literature on extremal bivariate return curves, a risk measure that is the natural bivariate extension to a return level, and propose new estimation methods based on multivariate extreme value models that can account for both asymptotic dependence and asymptotic independence. We identify gaps in the existing literature and propose novel tools for testing and validating return curves and comparing estimates from a range of multivariate models. These tools are then used to compare a selection of models through simulation and case studies. We conclude with a discussion and list some of the challenges.



rate research

Read More

We study causality between bivariate curve time series using the Granger causality generalized measures of correlation. With this measure, we can investigate which curve time series Granger-causes the other; in turn, it helps determine the predictability of any two curve time series. Illustrated by a climatology example, we find that the sea surface temperature Granger-causes the sea-level atmospheric pressure. Motivated by a portfolio management application in finance, we single out those stocks that lead or lag behind Dow-Jones industrial averages. Given a close relationship between S&P 500 index and crude oil price, we determine the leading and lagging variables.
69 - Yang Liu , David Ruppert 2019
This paper develops a novel approach to density estimation on a network. We formulate nonparametric density estimation on a network as a nonparametric regression problem by binning. Nonparametric regression using local polynomial kernel-weighted least squares have been studied rigorously, and its asymptotic properties make it superior to kernel estimators such as the Nadaraya-Watson estimator. When applied to a network, the best estimator near a vertex depends on the amount of smoothness at the vertex. Often, there are no compelling reasons to assume that a density will be continuous or discontinuous at a vertex, hence a data driven approach is proposed. To estimate the density in a neighborhood of a vertex, we propose a two-step procedure. The first step of this pretest estimator fits a separate local polynomial regression on each edge using data only on that edge, and then tests for equality of the estimates at the vertex. If the null hypothesis is not rejected, then the second step re-estimates the regression function in a small neighborhood of the vertex, subject to a joint equality constraint. Since the derivative of the density may be discontinuous at the vertex, we propose a piecewise polynomial local regression estimate to model the change in slope. We study in detail the special case of local piecewise linear regression and derive the leading bias and variance terms using weighted least squares theory. We show that the proposed approach will remove the bias near a vertex that has been noted for existing methods, which typically do not allow for discontinuity at vertices. For a fixed network, the proposed method scales sub-linearly with sample size and it can be extended to regression and varying coefficient models on a network. We demonstrate the workings of the proposed model by simulation studies and apply it to a dendrite network data set.
The random coefficients model $Y_i={beta_0}_i+{beta_1}_i {X_1}_i+{beta_2}_i {X_2}_i+ldots+{beta_d}_i {X_d}_i$, with $mathbf{X}_i$, $Y_i$, $mathbf{beta}_i$ i.i.d, and $mathbf{beta}_i$ independent of $X_i$ is often used to capture unobserved heterogeneity in a population. We propose a quasi-maximum likelihood method to estimate the joint density distribution of the random coefficient model. This method implicitly involves the inversion of the Radon transformation in order to reconstruct the joint distribution, and hence is an inverse problem. Nonparametric estimation for the joint density of $mathbf{beta}_i=({beta_0}_i,ldots, {beta_d}_i)$ based on kernel methods or Fourier inversion have been proposed in recent years. Most of these methods assume a heavy tailed design density $f_mathbf{X}$. To add stability to the solution, we apply regularization methods. We analyze the convergence of the method without assuming heavy tails for $f_mathbf{X}$ and illustrate performance by applying the method on simulated and real data. To add stability to the solution, we apply a Tikhonov-type regularization method.
A new bivariate copula is proposed for modeling negative dependence between two random variables. We show that it complies with most of the popular notions of negative dependence reported in the literature and study some of its basic properties. Specifically, the Spearmans rho and the Kendalls tau for the proposed copula have a simple one-parameter form with negative values in the full range. Some important ordering properties comparing the strength of negative dependence with respect to the parameter involved are considered. Simple examples of the corresponding bivariate distributions with popular marginals are presented. Application of the proposed copula is illustrated using a real data set.
We consider the problem of variable selection in high-dimensional settings with missing observations among the covariates. To address this relatively understudied problem, we propose a new synergistic procedure -- adaptive Bayesian SLOPE -- which effectively combines the SLOPE method (sorted $l_1$ regularization) together with the Spike-and-Slab LASSO method. We position our approach within a Bayesian framework which allows for simultaneous variable selection and parameter estimation, despite the missing values. As with the Spike-and-Slab LASSO, the coefficients are regarded as arising from a hierarchical model consisting of two groups: (1) the spike for the inactive and (2) the slab for the active. However, instead of assigning independent spike priors for each covariate, here we deploy a joint SLOPE spike prior which takes into account the ordering of coefficient magnitudes in order to control for false discoveries. Through extensive simulations, we demonstrate satisfactory performance in terms of power, FDR and estimation bias under a wide range of scenarios. Finally, we analyze a real dataset consisting of patients from Paris hospitals who underwent a severe trauma, where we show excellent performance in predicting platelet levels. Our methodology has been implemented in C++ and wrapped into an R package ABSLOPE for public use.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا