Do you want to publish a course? Click here

Optimizing the Numbers of Queries and Replies in Federated Learning with Differential Privacy

132   0   0.0 ( 0 )
 Added by Yipeng Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Federated learning (FL) empowers distributed clients to collaboratively train a shared machine learning model through exchanging parameter information. Despite the fact that FL can protect clients raw data, malicious users can still crack original data with disclosed parameters. To amend this flaw, differential privacy (DP) is incorporated into FL clients to disturb original parameters, which however can significantly impair the accuracy of the trained model. In this work, we study a crucial question which has been vastly overlooked by existing works: what are the optimal numbers of queries and replies in FL with DP so that the final model accuracy is maximized. In FL, the parameter server (PS) needs to query participating clients for multiple global iterations to complete training. Each client responds a query from the PS by conducting a local iteration. Our work investigates how many times the PS should query clients and how many times each client should reply the PS. We investigate two most extensively used DP mechanisms (i.e., the Laplace mechanism and Gaussian mechanisms). Through conducting convergence rate analysis, we can determine the optimal numbers of queries and replies in FL with DP so that the final model accuracy can be maximized. Finally, extensive experiments are conducted with publicly available datasets: MNIST and FEMNIST, to verify our analysis and the results demonstrate that properly setting the numbers of queries and replies can significantly improve the final model accuracy in FL with DP.



rate research

Read More

We consider the problem of reinforcing federated learning with formal privacy guarantees. We propose to employ Bayesian differential privacy, a relaxation of differential privacy for similarly distributed data, to provide sharper privacy loss bounds. We adapt the Bayesian privacy accounting method to the federated setting and suggest multiple improvements for more efficient privacy budgeting at different levels. Our experiments show significant advantage over the state-of-the-art differential privacy bounds for federated learning on image classification tasks, including a medical application, bringing the privacy budget below 1 at the client level, and below 0.1 at the instance level. Lower amounts of noise also benefit the model accuracy and reduce the number of communication rounds.
Differentially private algorithms for answering sets of predicate counting queries on a sensitive database have many applications. Organizations that collect individual-level data, such as statistical agencies and medical institutions, use them to safely release summary tabulations. However, existing techniques are accurate only on a narrow class of query workloads, or are extremely slow, especially when analyzing more than one or two dimensions of the data. In this work we propose HDMM, a new differentially private algorithm for answering a workload of predicate counting queries, that is especially effective for higher-dimensional datasets. HDMM represents query workloads using an implicit matrix representation and exploits this compact representation to efficiently search (a subset of) the space of differentially private algorithms for one that answers the input query workload with high accuracy. We empirically show that HDMM can efficiently answer queries with lower error than state-of-the-art techniques on a variety of low and high dimensional datasets.
Secure aggregation is a critical component in federated learning, which enables the server to learn the aggregate model of the users without observing their local models. Conventionally, secure aggregation algorithms focus only on ensuring the privacy of individual users in a single training round. We contend that such designs can lead to significant privacy leakages over multiple training rounds, due to partial user selection/participation at each round of federated learning. In fact, we empirically show that the conventional random user selection strategies for federated learning lead to leaking users individual models within number of rounds linear in the number of users. To address this challenge, we introduce a secure aggregation framework with multi-round privacy guarantees. In particular, we introduce a new metric to quantify the privacy guarantees of federated learning over multiple training rounds, and develop a structured user selection strategy that guarantees the long-term privacy of each user (over any number of training rounds). Our framework also carefully accounts for the fairness and the average number of participating users at each round. We perform several experiments on MNIST and CIFAR-10 datasets in the IID and the non-IID settings to demonstrate the performance improvement over the baseline algorithms, both in terms of privacy protection and test accuracy.
185 - Rulin Shao , Hongyu He , Hui Liu 2019
Artificial neural network has achieved unprecedented success in the medical domain. This success depends on the availability of massive and representative datasets. However, data collection is often prevented by privacy concerns and people want to take control over their sensitive information during both training and using processes. To address this problem, we propose a privacy-preserving method for the distributed system, Stochastic Channel-Based Federated Learning (SCBF), which enables the participants to train a high-performance model cooperatively without sharing their inputs. Specifically, we design, implement and evaluate a channel-based update algorithm for the central server in a distributed system, which selects the channels with regard to the most active features in a training loop and uploads them as learned information from local datasets. A pruning process is applied to the algorithm based on the validation set, which serves as a model accelerator. In the experiment, our model presents better performances and higher saturating speed than the Federated Averaging method which reveals all the parameters of local models to the server when updating. We also demonstrate that the saturating rate of performance could be promoted by introducing a pruning process. And further improvement could be achieved by tuning the pruning rate. Our experiment shows that 57% of the time is saved by the pruning process with only a reduction of 0.0047 in AUCROC performance and a reduction of 0.0068 in AUCPR.
In this work we describe the High-Dimensional Matrix Mechanism (HDMM), a differentially private algorithm for answering a workload of predicate counting queries. HDMM represents query workloads using a compact implicit matrix representation and exploits this representation to efficiently optimize over (a subset of) the space of differentially private algorithms for one that is unbiased and answers the input query workload with low expected error. HDMM can be deployed for both $epsilon$-differential privacy (with Laplace noise) and $(epsilon, delta)$-differential privacy (with Gaussian noise), although the core techniques are slightly different for each. We demonstrate empirically that HDMM can efficiently answer queries with lower expected error than state-of-the-art techniques, and in some cases, it nearly matches existing lower bounds for the particular class of mechanisms we consider.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا