Do you want to publish a course? Click here

Hot carrier dynamics and electron-optical phonon coupling in photoexcited graphene via time-resolved ultrabroadband terahertz spectroscopy

248   0   0.0 ( 0 )
 Added by Masatsugu Yamashita
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Electron-electron (e-e) interaction is known as a source of logarithmic renormalizations for Dirac fermions in quantum field theory. The renormalization of electron--optical phonon coupling (EPC) by e-e interaction, which plays a pivotal role in hot carrier and phonon dynamics, has been discussed after the discovery of graphene. We investigate the hot carrier dynamics and the EPC strength using time-resolved ultrabroadband terahertz (THz) spectroscopy combined with numerical simulation based on the Boltzmann transport equation and comprehensive temperature model. The large negative photoconductivity and the non-Drude behavior of THz conductivity spectra appear under high pump fluence and can be attributed to the temporal variation of the hot carrier distribution and scattering rate. We successfully estimate the dimensionless EPC matrix element of the $A_1^{prime}$ optical phonon mode near the $mathbf{K}$ point as $lambda_{mathbf{K}} approx$0.09 from the fitting of THz conductivity spectra and temporal evolution of transient THz reflectivity, which is slightly larger than the prediction of the renormalization group.



rate research

Read More

Using electrical transport experiments and shot noise thermometry, we investigate electron-phonon heat transfer rate in a suspended bilayer graphene. Contrary to monolayer graphene with heat flow via three-body supercollision scattering, we find that regular electron - optical phonon scattering in bilayer graphene provides the dominant scattering process at electron energies $ gtrsim 0.15$ eV. We determine the strength of these intrinsic heat flow processes of bilayer graphene and find good agreement with theoretical estimates when both zone edge and zone center optical phonons are taken into account.
The Fe pnictide parent compound EuFe2As2 exhibits a strongly momentum dependent carrier dynamics around the hole pocket at the center of the Brillouin zone. The very different dynamics of electrons and holes cannot be explained solely by intraband scattering and interband contributions have to be considered. In addition, three coherently excited modes at frequencies of 5.6, 3.1 and 2.4 THz are observed. An estimate of the electron-phonon coupling parameter reveals lambda < 0.5, suggesting a limited importance of e-ph coupling to superconductivity in Fe pnictides.
426 - V. Ryzhii , A. Satou , T. Otsuji 2014
We propose and analyze the concept of the vertical hot-electron terahertz (THz) graphene-layer detectors (GLDs) based on the double-GL and multiple-GL structures with the barrier layers made of materials with a moderate conduction band off-set (such as tungsten disulfide and related materials). The operation of these detectors is enabled by the thermionic emissions from the GLs enhanced by the electrons heated by incoming THz radiation. The electron heating is primarily associated with the intraband absorption (the Drude absorption). We calculate the responsivity and detectivity as functions of the photon energy, GL doping, and the applied voltage for the GL detectors (GLDs) with different number of GLs. The detectors based on the cascade multiple-GL structures can exhibit a substantial photoelectric gain resulting in the elevated responsivity and detectivity. The advantages of the THz detectors under consideration are associated with their high sensitivity to the normal incident radiation and efficient operation at room temperature at the low end of the THz frequency range. Such GLDs with a metal grating, supporting the excitation of plasma oscillations in the GL-structures by the incident THz radiation, can exhibit a strong resonant response at the frequencies of several THz (in the range, where the operation of the conventional detectors based on A$_3$B$_5$ materials, in particular THz quantum-well detectors, is hindered due to a strong optical phonon radiation absorption in such materials).
149 - F. Alzina , H. Tao , J. Moser 2010
We have investigated the effects of ozone treatment on graphene by Raman scattering. Sequential ozone short-exposure cycles resulted in increasing the $p$ doping levels as inferred from the blue shift of the 2$D$ and $G$ peak frequencies, without introducing significant disorder. The two-phonon 2$D$ and 2$D$ Raman peak intensities show a significant decrease, while, on the contrary, the one-phonon G Raman peak intensity remains constant for the whole exposure process. The former reflects the dynamics of the photoexcited electrons (holes) and, specifically, the increase of the electron-electron scattering rate with doping. From the ratio of 2$D$ to 2$D$ intensities, which remains constant with doping, we could extract the ratio of electron-phonon coupling parameters. This ratio is found independent on the number of layers up to ten layers. Moreover, the rate of decrease of 2$D$ and 2$D$ intensities with doping was found to slowdown inversely proportional to the number of graphene layers, revealing the increase of the electron-electron collision probability.
We study theoretically the relaxation of hot quantum-Hall edge-channel electrons under the emission of both acoustic and optical phonons. Aiming to model recent experiments with single-electron sources, we describe simulations that provide the distribution of electron energies and arrival times at a detector a fixed distance from the source. From these simulations we extract an effective rate of emission of optical phonons that contains contributions from both a direct emission process as well as one involving inter-edge-channel transitions that are driven by the sequential emission of first an acoustic -- and then an optical -- phonon. Furthermore, we consider the mean energy loss due to acoustic phonon emission and resultant broadening of the electron energy distribution and derive an effective drift-diffusion model for this process.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا