Do you want to publish a course? Click here

Impact of Channel Aging on Zero-Forcing Precoding in Cell-Free Massive MIMO Systems

97   0   0.0 ( 0 )
 Added by Wei Jiang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In the context of cell-free massive multi-input multi-output (mMIMO), zero-forcing precoding (ZFP) requires the exchange of instantaneous channel state information and precoded data symbols via a fronthaul network. It causes considerable propagation and processing delays, which degrade performance. This letter analyzes the impact of channel aging on the performance of ZFP in cell-free mMIMO. The aging effects of not only user mobility but also phase noise are considered. Numerical results in terms of per-user spectral efficiency are illustrated.



rate research

Read More

We consider a cell-free hybrid massive multiple-input multiple-output (MIMO) system with $K$ users and $M$ access points (APs), each with $N_a$ antennas and $N_r< N_a$ radio frequency (RF) chains. When $Kll M{N_a}$, efficient uplink channel estimation and data detection with reduced number of pilots can be performed based on low-rank matrix completion. However, such a scheme requires the central processing unit (CPU) to collect received signals from all APs, which may enable the CPU to infer the private information of user locations. We therefore develop and analyze privacy-preserving channel estimation schemes under the framework of differential privacy (DP). As the key ingredient of the channel estimator, two joint differentially private noisy matrix completion algorithms based respectively on Frank-Wolfe iteration and singular value decomposition are presented. We provide an analysis on the tradeoff between the privacy and the channel estimation error. In particular, we show that the estimation error can be mitigated while maintaining the same privacy level by increasing the payload size with fixed pilot size; and the scaling laws of both the privacy-induced and privacy-independent error components in terms of payload size are characterized. Simulation results are provided to further demonstrate the tradeoff between privacy and channel estimation performance.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with both spatial correlation and pilot contamination. We derive novel closed-form uplink and downlink spectral efficiency (SE) expressions that take imperfect channel estimation into account. More specifically, we consider large-scale fading decoding and matched-filter receiver cooperation in the uplink. The uplink performance of a small-cell (SC) system is derived for comparison. The CF massive MIMO system achieves higher 95%-likely uplink SE than the SC system. In the downlink, the coherent transmission has four times higher 95%-likely per-user SE than the non-coherent transmission. Statistical channel cooperation power control (SCCPC) is used to mitigate the inter-user interference. SCCPC performs better than full power transmission, but the benefits are gradually weakened as the channel aging becomes stronger. Furthermore, strong spatial correlation reduces the SE but degrades the effect of channel aging. Increasing the number of antennas can improve the SE while decreasing the energy efficiency. Finally, we use the maximum normalized Doppler shift to design the SE-improved length of the resource block. Simulation results are presented to validate the accuracy of our expressions and prove that the CF massive MIMO system is more robust to channel aging than the SC system.
Cell-free (CF) massive multiple-input multiple-output (MIMO) is a promising solution to provide uniform good performance for unmanned aerial vehicle (UAV) communications. In this paper, we propose the UAV communication with wireless power transfer (WPT) aided CF massive MIMO systems, where the harvested energy (HE) from the downlink WPT is used to support both uplink data and pilot transmission. We derive novel closed-form downlink HE and uplink spectral efficiency (SE) expressions that take hardware impairments of UAV into account. UAV communications with current small cell (SC) and cellular massive MIMO enabled WPT systems are also considered for comparison. It is significant to show that CF massive MIMO achieves two and five times higher 95%-likely uplink SE than the ones of SC and cellular massive MIMO, respectively. Besides, the large-scale fading decoding receiver cooperation can reduce the interference of the terrestrial user. Moreover, the maximum SE can be achieved by changing the time-splitting fraction. We prove that the optimal time-splitting fraction for maximum SE is determined by the number of antennas, altitude and hardware quality factor of UAVs. Furthermore, we propose three UAV trajectory design schemes to improve the SE. It is interesting that the angle search scheme performs best than both AP search and line path schemes. Finally, simulation results are presented to validate the accuracy of our expressions.
In this paper, we investigate the impact of channel aging on the performance of cell-free (CF) massive multiple-input multiple-output (MIMO) systems with pilot contamination. To take into account the channel aging effect due to user mobility, we first compute a channel estimate. We use it to derive novel closed-form expressions for the uplink spectral efficiency (SE) of CF massive MIMO systems with large-scale fading decoding and matched-filter receiver cooperation. The performance of a small-cell system is derived for comparison. It is found that CF massive MIMO systems achieve higher 95%-likely uplink SE in both low- and high-mobility conditions, and CF massive MIMO is more robust to channel aging. Fractional power control (FPC) is considered to compensate to limit the inter-user interference. The results show that, compared with full power transmission, the benefits of FPC are gradually weakened as the channel aging grows stronger.
In cell-free massive MIMO networks, an efficient distributed detection algorithm is of significant importance. In this paper, we propose a distributed expectation propagation (EP) detector for cell-free massive MIMO. The detector is composed of two modules, a nonlinear module at the central processing unit (CPU) and a linear module at the access point (AP). The turbo principle in iterative decoding is utilized to compute and pass the extrinsic information between modules. An analytical framework is then provided to characterize the asymptotic performance of the proposed EP detector with a large number of antennas. Simulation results will show that the proposed method outperforms the distributed detectors in terms of bit-error-rate.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا