Do you want to publish a course? Click here

Simulations of systematic effects arising from cosmic rays in the LiteBIRD space telescope, and effects on the measurements of CMB $B$-modes

250   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Systematic effects arising from cosmic rays have been shown to be a significant threat to space telescopes using high-sensitivity bolometers. The LiteBIRD space mission aims to measure the polarised Cosmic Microwave Background with unprecedented sensitivity, but its positioning in space will also render it susceptible to cosmic ray effects. We present an end-to-end simulator for evaluating the expected scale of cosmic ray effect on the LiteBIRD space mission, which we demonstrate on a subset of detectors on the 166 GHz band of the Low Frequency Telescope. The simulator couples the expected proton flux at L2 with a model of the thermal response of the LFT focal plane and the electrothermal response of its superconducting detectors, producing time-ordered data which is projected into simulated sky maps and subsequent angular power spectra.



rate research

Read More

The LiteBIRD satellite is planned to be launched by JAXA in the late 2020s. Its main purpose is to observe the large-scale B-mode polarization in the Cosmic Microwave Background (CMB) anticipated from the Inflation theory. LiteBIRD will observe the sky for three years at the second Lagrangian point (L2) of the Sun-Earth system. Planck was the predecessor for observing the CMB at L2, and the onboard High Frequency Instrument (HFI) suffered contamination by glitches caused by the cosmic-ray (CR) hits. We consider the CR hits can also be a serious source of the systematic uncertainty for LiteBIRD. Thus, we have started a comprehensive end-to-end simulation study to assess impact of the CR hits for the LiteBIRD detectors. Here, we describe procedures to make maps and power spectra from the simulated time-ordered data, and present initial results. Our initial estimate is that $C_l^{BB}$ by CR is $sim 2 times 10^{-6}~mu$K$_{mathrm{CMB}}^{2}$ in a one-year observation with 12 detectors assuming that the noise is 1~aW/$sqrt{mathrm{Hz}}$ for the differential mode of two detectors constituting a polarization pair.
LiteBIRD has been selected as JAXAs strategic large mission in the 2020s, to observe the cosmic microwave background (CMB) $B$-mode polarization over the full sky at large angular scales. The challenges of LiteBIRD are the wide field-of-view (FoV) and broadband capabilities of millimeter-wave polarization measurements, which are derived from the system requirements. The possible paths of stray light increase with a wider FoV and the far sidelobe knowledge of $-56$ dB is a challenging optical requirement. A crossed-Dragone configuration was chosen for the low frequency telescope (LFT : 34--161 GHz), one of LiteBIRDs onboard telescopes. It has a wide field-of-view ($18^circ times 9^circ$) with an aperture of 400 mm in diameter, corresponding to an angular resolution of about 30 arcminutes around 100 GHz. The focal ratio f/3.0 and the crossing angle of the optical axes of 90$^circ$ are chosen after an extensive study of the stray light. The primary and secondary reflectors have rectangular shapes with serrations to reduce the diffraction pattern from the edges of the mirrors. The reflectors and structure are made of aluminum to proportionally contract from warm down to the operating temperature at $5,$K. A 1/4 scaled model of the LFT has been developed to validate the wide field-of-view design and to demonstrate the reduced far sidelobes. A polarization modulation unit (PMU), realized with a half-wave plate (HWP) is placed in front of the aperture stop, the entrance pupil of this system. A large focal plane with approximately 1000 AlMn TES detectors and frequency multiplexing SQUID amplifiers is cooled to 100 mK. The lens and sinuous antennas have broadband capability. Performance specifications of the LFT and an outline of the proposed verification plan are presented.
The most accessible method to measure polarization features of the CMB radiation is by means of a Stokes Polarimeter based on the rotation of an Half Wave Plate. The current observational cosmology is starting to be limited by the presence of systematic effects. The Stokes polarimeter with a rotating Half Wave Plate (HWP) has the advantage of mitigating a long list of potential systematics, by modulation of the linearly polarized component of the radiation, but the presence of the rotating HWP can by itself introduce new systematic effects, which must be under control, representing one of the most critical part in the design of a B-Modes experiment. In this paper we present, simulate and analyse the spurious signal arising from the precession of a rotating HWP. We first find an analytical formula for the impact of the systematic effect induced by the HWP precession on the propagating radiation, using the 3D generalization of the Muller formalism. We then perform several numerical simulations, showing the effect induced on the Stokes parameters by this systematic. We also derive and discuss the impact into B-modes measured by a satellite experiment. We find the analytical formula for the Stokes parameters from a Stokes polarimeter where the HWP follows a precessional motion with an angle $theta_0$. We show the result depending on the HWP inertia tensor, spinning speed and on $theta_0$. The result of numerical simulations is reported as a simple timeline of the electric fields. Finally, assuming to observe all the sky with a satellite mission, we analyze the effect on B-modes measurements. The effect is not negligible giving the current B-modes experiments sensitivity, therefore it is a systematic which needs to be carefully considered for future experiments.
LiteBIRD is a JAXA-led strategic Large-Class satellite mission designed to measure the polarization of the cosmic microwave background and cosmic foregrounds from 34 to 448 GHz across the entire sky from L2 in the late 2020s. The primary focus of the mission is to measure primordially generated B-mode polarization at large angular scales. Beyond its primary scientific objective LiteBIRD will generate a data-set capable of probing a number of scientific inquiries including the sum of neutrino masses. The primary responsibility of United States will be to fabricate the three flight model focal plane units for the mission. The design and fabrication of these focal plane units is driven by heritage from ground based experiments and will include both lenslet-coupled sinuous antenna pixels and horn-coupled orthomode transducer pixels. The experiment will have three optical telescopes called the low frequency telescope, mid frequency telescope, and high frequency telescope each of which covers a portion of the missions frequency range. JAXA is responsible for the construction of the low frequency telescope and the European Consortium is responsible for the mid- and high- frequency telescopes. The broad frequency coverage and low optical loading conditions, made possible by the space environment, require development and adaptation of detector technology recently deployed by other cosmic microwave background experiments. This design, fabrication, and characterization will take place at UC Berkeley, NIST, Stanford, and Colorado University, Boulder. We present the current status of the US deliverables to the LiteBIRD mission.
LiteBIRD is a JAXA strategic L-class mission devoted to the measurement of polarization of the Cosmic Microwave Background, searching for the signature of primordial gravitational waves in the B-modes pattern of the polarization. The onboard instrumentation includes a Middle and High Frequency Telescope (MHFT), based on a pair of cryogenically cooled refractive telescopes covering, respectively, the 89-224 GHz and the 166-448 GHz bands. Given the high target sensitivity and the careful systematics control needed to achieve the scientific goals of the mission, optical modeling and characterization are performed with the aim to capture most of the physical effects potentially affecting the real performance of the two refractors. We describe the main features of the MHFT, its design drivers and the major challenges in system optimization and characterization. We provide the current status of the development of the optical system and we describe the current plan of activities related to optical performance simulation and validation.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا