No Arabic abstract
We study the stochastic bilinear minimax optimization problem, presenting an analysis of the Stochastic ExtraGradient (SEG) method with constant step size, and presenting variations of the method that yield favorable convergence. We first note that the last iterate of the basic SEG method only contracts to a fixed neighborhood of the Nash equilibrium, independent of the step size. This contrasts sharply with the standard setting of minimization where standard stochastic algorithms converge to a neighborhood that vanishes in proportion to the square-root (constant) step size. Under the same setting, however, we prove that when augmented with iteration averaging, SEG provably converges to the Nash equilibrium, and such a rate is provably accelerated by incorporating a scheduled restarting procedure. In the interpolation setting, we achieve an optimal convergence rate up to tight constants. We present numerical experiments that validate our theoretical findings and demonstrate the effectiveness of the SEG method when equipped with iteration averaging and restarting.
Stochastic differential games have been used extensively to model agents competitions in Finance, for instance, in P2P lending platforms from the Fintech industry, the banking system for systemic risk, and insurance markets. The recently proposed machine learning algorithm, deep fictitious play, provides a novel efficient tool for finding Markovian Nash equilibrium of large $N$-player asymmetric stochastic differential games [J. Han and R. Hu, Mathematical and Scientific Machine Learning Conference, pages 221-245, PMLR, 2020]. By incorporating the idea of fictitious play, the algorithm decouples the game into $N$ sub-optimization problems, and identifies each players optimal strategy with the deep backward stochastic differential equation (BSDE) method parallelly and repeatedly. In this paper, we prove the convergence of deep fictitious play (DFP) to the true Nash equilibrium. We can also show that the strategy based on DFP forms an $eps$-Nash equilibrium. We generalize the algorithm by proposing a new approach to decouple the games, and present numerical results of large population games showing the empirical convergence of the algorithm beyond the technical assumptions in the theorems.
This paper investigates the problem of computing the equilibrium of competitive games, which is often modeled as a constrained saddle-point optimization problem with probability simplex constraints. Despite recent efforts in understanding the last-iterate convergence of extragradient methods in the unconstrained setting, the theoretical underpinnings of these methods in the constrained settings, especially those using multiplicative updates, remain highly inadequate, even when the objective function is bilinear. Motivated by the algorithmic role of entropy regularization in single-agent reinforcement learning and game theory, we develop provably efficient extragradient methods to find the quantal response equilibrium (QRE) -- which are solutions to zero-sum two-player matrix games with entropy regularization -- at a linear rate. The proposed algorithms can be implemented in a decentralized manner, where each player executes symmetric and multiplicative updates iteratively using its own payoff without observing the opponents actions directly. In addition, by controlling the knob of entropy regularization, the proposed algorithms can locate an approximate Nash equilibrium of the unregularized matrix game at a sublinear rate without assuming the Nash equilibrium to be unique. Our methods also lead to efficient policy extragradient algorithms for solving entropy-regularized zero-sum Markov games at a linear rate. All of our convergence rates are nearly dimension-free, which are independent of the size of the state and action spaces up to logarithm factors, highlighting the positive role of entropy regularization for accelerating convergence.
Advances in generative modeling and adversarial learning have given rise to renewed interest in smooth games. However, the absence of symmetry in the matrix of second derivatives poses challenges that are not present in the classical minimization framework. While a rich theory of average-case analysis has been developed for minimization problems, little is known in the context of smooth games. In this work we take a first step towards closing this gap by developing average-case optimal first-order methods for a subset of smooth games. We make the following three main contributions. First, we show that for zero-sum bilinear games the average-case optimal method is the optimal method for the minimization of the Hamiltonian. Second, we provide an explicit expression for the optimal method corresponding to normal matrices, potentially non-symmetric. Finally, we specialize it to matrices with eigenvalues located in a disk and show a provable speed-up compared to worst-case optimal algorithms. We illustrate our findings through benchmarks with a varying degree of mismatch with our assumptions.
Recent years have witnessed the surge of asynchronous parallel (async-parallel) iterative algorithms due to problems involving very large-scale data and a large number of decision variables. Because of asynchrony, the iterates are computed with outdated information, and the age of the outdated information, which we call delay, is the number of times it has been updated since its creation. Almost all recent works prove convergence under the assumption of a finite maximum delay and set their stepsize parameters accordingly. However, the maximum delay is practically unknown. This paper presents convergence analysis of an async-parallel method from a probabilistic viewpoint, and it allows for large unbounded delays. An explicit formula of stepsize that guarantees convergence is given depending on delays statistics. With $p+1$ identical processors, we empirically measured that delays closely follow the Poisson distribution with parameter $p$, matching our theoretical model, and thus the stepsize can be set accordingly. Simulations on both convex and nonconvex optimization problems demonstrate the validness of our analysis and also show that the existing maximum-delay induced stepsize is too conservative, often slowing down the convergence of the algorithm.
In this paper, we study a class of generalized monotone variational inequality (GMVI) problems whose operators are not necessarily monotone (e.g., pseudo-monotone). We present non-Euclidean extragradient (N-EG) methods for computing approximate strong solutions of these problems, and demonstrate how their iteration complexities depend on the global Lipschitz or H{o}lder continuity properties for their operators and the smoothness properties for the distance generating function used in the N-EG algorithms. We also introduce a variant of this algorithm by incorporating a simple line-search procedure to deal with problems with more general continuous operators. Numerical studies are conducted to illustrate the significant advantages of the developed algorithms over the existing ones for solving large-scale GMVI problems.