No Arabic abstract
Spreadsheet formula prediction has been an important program synthesis problem with many real-world applications. Previous works typically utilize input-output examples as the specification for spreadsheet formula synthesis, where each input-output pair simulates a separate row in the spreadsheet. However, this formulation does not fully capture the rich context in real-world spreadsheets. First, spreadsheet data entries are organized as tables, thus rows and columns are not necessarily independent from each other. In addition, many spreadsheet tables include headers, which provide high-level descriptions of the cell data. However, previous synthesis approaches do not consider headers as part of the specification. In this work, we present the first approach for synthesizing spreadsheet formulas from tabular context, which includes both headers and semi-structured tabular data. In particular, we propose SpreadsheetCoder, a BERT-based model architecture to represent the tabular context in both row-based and column-based formats. We train our model on a large dataset of spreadsheets, and demonstrate that SpreadsheetCoder achieves top-1 prediction accuracy of 42.51%, which is a considerable improvement over baselines that do not employ rich tabular context. Compared to the rule-based system, SpreadsheetCoder assists 82% more users in composing formulas on Google Sheets.
Structured prediction tasks pose a fundamental trade-off between the need for model complexity to increase predictive power and the limited computational resources for inference in the exponentially-sized output spaces such models require. We formulate and develop the Structured Prediction Cascade architecture: a sequence of increasingly complex models that progressively filter the space of possible outputs. The key principle of our approach is that each model in the cascade is optimized to accurately filter and refine the structured output state space of the next model, speeding up both learning and inference in the next layer of the cascade. We learn cascades by optimizing a novel convex loss function that controls the trade-off between the filtering efficiency and the accuracy of the cascade, and provide generalization bounds for both accuracy and efficiency. We also extend our approach to intractable models using tree-decomposition ensembles, and provide algorithms and theory for this setting. We evaluate our approach on several large-scale problems, achieving state-of-the-art performance in handwriting recognition and human pose recognition. We find that structured prediction cascades allow tremendous speedups and the use of previously intractable features and models in both settings.
Automated compilation error repair, the problem of suggesting fixes to buggy programs that fail to compile, has generated significant interest in recent years. Apart from being a tool of general convenience, automated code repair has significant pedagogical applications for novice programmers who find compiler error messages cryptic and unhelpful. Existing approaches largely solve this problem using a blackbox-application of a heavy-duty generative learning technique, such as sequence-to-sequence prediction (TRACER) or reinforcement learning (RLAssist). Although convenient, such black-box application of learning techniques makes existing approaches bulky in terms of training time, as well as inefficient at targeting specific error types. We present MACER, a novel technique for accelerated error repair based on a modular segregation of the repair process into repair identification and repair application. MACER uses powerful yet inexpensive discriminative learning techniques such as multi-label classifiers and rankers to first identify the type of repair required and then apply the suggested repair. Experiments indicate that the fine-grained approach adopted by MACER offers not only superior error correction, but also much faster training and prediction. On a benchmark dataset of 4K buggy programs collected from actual student submissions, MACER outperforms existing methods by 20% at suggesting fixes for popular errors that exactly match the fix desired by the student. MACER is also competitive or better than existing methods at all error types -- whether popular or rare. MACER offers a training time speedup of 2x over TRACER and 800x over RLAssist, and a test time speedup of 2-4x over both.
Syntax-Guided Synthesis (SyGuS) is the computational problem of finding an implementation f that meets both a semantic constraint given by a logical formula phi in a background theory T, and a syntactic constraint given by a grammar G, which specifies the allowed set of candidate implementations. Such a synthesis problem can be formally defined in SyGuS-IF, a language that is built on top of SMT-LIB. The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an effort to facilitate, bring together and accelerate research and development of efficient solvers for SyGuS by providing a platform for evaluating different synthesis techniques on a comprehensive set of benchmarks. In this years competition six new solvers competed on over 1500 benchmarks. This paper presents and analyses the results of SyGuS-Comp17.
Modern, complex software systems are being continuously extended and adjusted. The developers responsible for this may come from different teams or organizations, and may be distributed over the world. This may make it difficult to keep track of what other developers are doing, which may result in multiple developers concurrently editing the same code areas. This, in turn, may lead to hard-to-merge changes or even merge conflicts, logical bugs that are difficult to detect, duplication of work, and wasted developer productivity. To address this, we explore the extent of this problem in the pull request based software development model. We study half a year of changes made to six large repositories in Microsoft in which at least 1,000 pull requests are created each month. We find that files concurrently edited in different pull requests are more likely to introduce bugs. Motivated by these findings, we design, implement, and deploy a service named ConE (Concurrent Edit Detector) that proactively detects pull requests containing concurrent edits, to help mitigate the problems caused by them. ConE has been designed to scale, and to minimize false alarms while still flagging relevant concurrently edited files. Key concepts of ConE include the detection of the Extent of Overlap between pull requests, and the identification of Rarely Concurrently Edited Files. To evaluate ConE, we report on its operational deployment on 234 repositories inside Microsoft. ConE assessed 26,000 pull requests and made 775 recommendations about conflicting changes, which were rated as useful in over 70% (554) of the cases. From interviews with 48 users we learned that they believed ConE would save time in conflict resolution and avoiding duplicate work, and that over 90% intend to keep using the service on a daily basis.
In software reverse engineering, decompilation is the process of recovering source code from binary files. Decompilers are used when it is necessary to understand or analyze software for which the source code is not available. Although existing decompilers commonly obtain source code with the same behavior as the binaries, that source code is usually hard to interpret and certainly differs from the original code written by the programmer. Massive codebases could be used to build supervised machine learning models aimed at improving existing decompilers. In this article, we build different classification models capable of inferring the high-level type returned by functions, with significantly higher accuracy than existing decompilers. We automatically instrument C source code to allow the association of binary patterns with their corresponding high-level constructs. A dataset is created with a collection of real open-source applications plus a huge number of synthetic programs. Our system is able to predict function return types with a 79.1% F1-measure, whereas the best decompiler obtains a 30% F1-measure. Moreover, we document the binary patterns used by our classifier to allow their addition in the implementation of existing decompilers.