No Arabic abstract
Syntax-Guided Synthesis (SyGuS) is the computational problem of finding an implementation f that meets both a semantic constraint given by a logical formula phi in a background theory T, and a syntactic constraint given by a grammar G, which specifies the allowed set of candidate implementations. Such a synthesis problem can be formally defined in SyGuS-IF, a language that is built on top of SMT-LIB. The Syntax-Guided Synthesis Competition (SyGuS-Comp) is an effort to facilitate, bring together and accelerate research and development of efficient solvers for SyGuS by providing a platform for evaluating different synthesis techniques on a comprehensive set of benchmarks. In this years competition six new solvers competed on over 1500 benchmarks. This paper presents and analyses the results of SyGuS-Comp17.
Syntax-guided synthesis (SyGuS) is the computational problem of finding an implementation $f$ that meets both a semantic constraint given by a logical formula $phi$ in a background theory $mathbb{T}$, and a syntactic constraint given by a grammar $G$, which specifies the allowed set of candidate implementations. Such a synthesis problem can be formally defined in the SyGuS input format (SyGuS-IF), a language that is built on top of SMT-LIB. The Syntax-Guided Synthesis competition (SyGuS-Comp) is an effort to facilitate, bring together and accelerate research and development of efficient solvers for SyGuS by providing a platform for evaluating different synthesis techniques on a comprehensive set of benchmarks. In the 5th SyGuS-Comp, five solvers competed on over 1600 benchmarks across various tracks. This paper presents and analyses the results of this years (2018) SyGuS competition.
Machine Learning models from other fields, like Computational Linguistics, have been transplanted to Software Engineering tasks, often quite successfully. Yet a transplanted models initial success at a given task does not necessarily mean it is well-suited for the task. In this work, we examine a common example of this phenomenon: the conceit that software patching is like language translation. We demonstrate empirically that there are subtle, but critical distinctions between sequence-to-sequence models and translation model: while program repair benefits greatly from the former, general modeling architecture, it actually suffers from design decisions built into the latter, both in terms of translation accuracy and diversity. Given these findings, we demonstrate how a more principled approach to model design, based on our empirical findings and general knowledge of software development, can lead to better solutions. Our findings also lend strong support to the recent trend towards synthesizing edits of code conditional on the buggy context, to repair bugs. We implement such models ourselves as proof-of-concept tools and empirically confirm that they behave in a fundamentally different, more effective way than the studied translation-based architectures. Overall, our results demonstrate the merit of studying the intricacies of machine learned models in software engineering: not only can this help elucidate potential issues that may be overshadowed by increases in accuracy; it can also help innovate on these models to raise the state-of-the-art further. We will publicly release our replication data and materials at https://github.com/ARiSE-Lab/Patch-as-translation.
This report summarizes the second International Verification of Neural Networks Competition (VNN-COMP 2021), held as a part of the 4th Workshop on Formal Methods for ML-Enabled Autonomous Systems that was collocated with the 33rd International Conference on Computer-Aided Verification (CAV). Twelve teams participated in this competition. The goal of the competition is to provide an objective comparison of the state-of-the-art methods in neural network verification, in terms of scalability and speed. Along this line, we used standard formats (ONNX for neural networks and VNNLIB for specifications), standard hardware (all tools are run by the organizers on AWS), and tool parameters provided by the tool authors. This report summarizes the rules, benchmarks, participating tools, results, and lessons learned from this competition.
Automated compilation error repair, the problem of suggesting fixes to buggy programs that fail to compile, has generated significant interest in recent years. Apart from being a tool of general convenience, automated code repair has significant pedagogical applications for novice programmers who find compiler error messages cryptic and unhelpful. Existing approaches largely solve this problem using a blackbox-application of a heavy-duty generative learning technique, such as sequence-to-sequence prediction (TRACER) or reinforcement learning (RLAssist). Although convenient, such black-box application of learning techniques makes existing approaches bulky in terms of training time, as well as inefficient at targeting specific error types. We present MACER, a novel technique for accelerated error repair based on a modular segregation of the repair process into repair identification and repair application. MACER uses powerful yet inexpensive discriminative learning techniques such as multi-label classifiers and rankers to first identify the type of repair required and then apply the suggested repair. Experiments indicate that the fine-grained approach adopted by MACER offers not only superior error correction, but also much faster training and prediction. On a benchmark dataset of 4K buggy programs collected from actual student submissions, MACER outperforms existing methods by 20% at suggesting fixes for popular errors that exactly match the fix desired by the student. MACER is also competitive or better than existing methods at all error types -- whether popular or rare. MACER offers a training time speedup of 2x over TRACER and 800x over RLAssist, and a test time speedup of 2-4x over both.
Modern, complex software systems are being continuously extended and adjusted. The developers responsible for this may come from different teams or organizations, and may be distributed over the world. This may make it difficult to keep track of what other developers are doing, which may result in multiple developers concurrently editing the same code areas. This, in turn, may lead to hard-to-merge changes or even merge conflicts, logical bugs that are difficult to detect, duplication of work, and wasted developer productivity. To address this, we explore the extent of this problem in the pull request based software development model. We study half a year of changes made to six large repositories in Microsoft in which at least 1,000 pull requests are created each month. We find that files concurrently edited in different pull requests are more likely to introduce bugs. Motivated by these findings, we design, implement, and deploy a service named ConE (Concurrent Edit Detector) that proactively detects pull requests containing concurrent edits, to help mitigate the problems caused by them. ConE has been designed to scale, and to minimize false alarms while still flagging relevant concurrently edited files. Key concepts of ConE include the detection of the Extent of Overlap between pull requests, and the identification of Rarely Concurrently Edited Files. To evaluate ConE, we report on its operational deployment on 234 repositories inside Microsoft. ConE assessed 26,000 pull requests and made 775 recommendations about conflicting changes, which were rated as useful in over 70% (554) of the cases. From interviews with 48 users we learned that they believed ConE would save time in conflict resolution and avoiding duplicate work, and that over 90% intend to keep using the service on a daily basis.