Do you want to publish a course? Click here

Discovery of eRASSt J192932.9-560346: a bright, two-pole accreting, eclipsing polar

116   0   0.0 ( 0 )
 Added by Axel D. Schwope
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a bright (V ~ 15), eclipsing, two-pole accreting magnetic cataclysmic variable (CV), a polar, as counterpart of the eROSITA and Gaia transients eRASSt 192932.9-560346 and Gaia21bxo. Frequent large amplitude changes of its brightness at X-ray and optical wavelengths by more than 4 magnitudes was indicative of a CV nature of the source. Identification spectra obtained with the 10m SALT telescope revealed the typical features of a magnetic CV, strong, broad HeI, HeII and hydrogen Balmer emission lines superposed on a blue continuum. Time-resolved photoelectric polarimetry revealed circular polarization to vary from -20% to +20%, and linear polarization from 0% to 10% confirming the system to be magnetic CV of the polar subclass. High cadence photometry revealed deep, structured eclipses, indicating that the system is a two pole accretor. The orbital period determined from the eclipse times is 92.5094 +- 0.0002 min. The X-ray spectrum is thermal only and the implied luminosity is L_X=2.2 x 10^(31) erg/s at the Gaia-determined distance of 376 pc.



rate research

Read More

We have identified a star in the WASP archive photometry with an unusual lightcurve due to the total eclipse of a small, hot star by an apparently normal A-type star and with an orbital period of only 0.668d. From an analysis of the WASP lightcurve together with V-band and I_C-band photometry of the eclipse and a spectroscopic orbit for the A-type star we estimate that the companion star has a mass of (0.23+-0.03)Msun and a radius of (0.33+-0.01)Rsun, assuming that the A-type star is a main-sequence star with the metalicity appropriate for a thick-disk star. The effective temperature of the companion is (13400+-1200)K from which we infer a luminosity of (3+-1)Lsun. From a comparison of these parameters to various models we conclude that the companion is most likely to be the remnant of a red giant star that has been very recently stripped of its outer layers by mass transfer onto the A-type star. In this scenario, the companion is currently in a shell hydrogen-burning phase of its evolution, evolving at nearly constant luminosity to hotter effective temperatures prior to ceasing hydrogen burning and fading to become a low-mass white dwarf composed of helium (He-WD). The system will then resemble the pre-He-WD/He-WD companions to A-type and B-type stars recently identified from their Kepler satellite lightcurves (KOI-74, KOI-81 and KIC10657664). This newly discovered binary offers the opportunity to study the evolution of a stripped red giant star through the pre-He-WD stage in great detail.
174 - P. F. L. Maxted 2012
We report the serendipitous discovery from WASP archive photometry of a binary star in which an apparently normal A-type star (J0247-25A) eclipses a smaller, hotter subdwarf star (J0247-25B). The kinematics of J0247-25A show that it is a blue-straggler member of the Galactic thick-disk. We present follow-up photometry and spectroscopy from which we derive approximate values for the mass, radius and luminosity for J0247-25B assuming that J0247-25A has the mass appropriate for a normal thick-disk star. We find that the properties of J0247-25B are well matched by models for a red giant stripped of its outer layers and currently in a shell hydrogen-burning stage. In this scenario, J0247-25B will go on to become a low mass white dwarf (M~0.25 solar masses) composed mostly of helium. J0247-25B can be studied in much greater detail than the handful of pre helium white dwarfs (pre-He-WD) identified to-date. These results have been published by Maxted et al., 2011. We also present a preliminary analysis of more recent observations of J0247-25 with the UVES spectrograph, from which we derive much improved masses for both stars in the binary. We find that both stars are more massive than expected and that J0247-25A rotates sub-synchronously by a factor of about 2. We also present lightcurves for 5 new eclipsing pre-He-WD subsequently identified from the WASP archive photometry, 4 of which have mass estimates for the subdwarf companion based on a pair of radial velocity measurements.
We report the discovery of a new eclipsing polar, MASTER OT J061451.70-272535.5, detected as an optical transient by MASTER auto-detection software at the recently commissioned MASTER-SAAO telescope. Time resolved (10-20 s) photometry with the SAAO 1.9-m, and 1.0-m telescopes, utilizing the SHOC EM-CCD cameras, revealed that the source eclipses, with a period of 2.08 hours (7482.9$pm$3.5$,$s). The eclipse light curve has a peculiar morphology, comprising an initial dip, where the source brightness drops to ${sim}$50% of the pre-eclipse level before gradually increasing again in brightness. A second rapid ingress follows, where the brightness drops by ${sim}$60-80%, followed by a more gradual decrease to zero flux. We interpret the eclipse profile as the result of an initial obscuration of the accretion hot-spot on the magnetic white dwarf by the accretion stream, followed by an eclipse of both the hot-spot and the partially illuminated stream by the red dwarf donor star. This is similar to what has been observed in other eclipsing polars such as HU Aqr, but here the stream absorption is more pronounced. The object was subsequently observed with South African Large Telescope (SALT) using the Robert Stobie Spectrograph (RSS). This revealed a spectrum with all of the Balmer lines in emission, a strong HeII 4686AA{} line with a peak flux greater than that of H$beta$, as well as weaker HeI lines. The spectral features, along with the structure of the light curve, suggest that MASTER OT J061451.70-272535.5 is a new magnetic cataclysmic variable, most likely of the synchronised Polar subclass.
We report on the discovery of J0644+3344, a bright deeply eclipsing cataclysmic variable (CV) binary. Spectral signatures of both binary components and an accretion disk can be seen at optical wavelengths. The optical spectrum shows broad H I, He I, and He II accretion disk emission lines with deep narrow absorption components from H I, He I, Mg II and Ca II. The absorption lines are seen throughout the orbital period, disappearing only during primary eclipse. These absorption lines are either the the result of an optically-thick inner accretion disk or from the photosphere of the primary star. Radial velocity measurements show that the H I, He I, and Mg II absorption lines phase with the the primary star, while weak absorption features in the continuum phase with the secondary star. Radial velocity solutions give a 150+/-4 km/s semi-amplitude for the primary star and 192.8+/-5.6 km/s for the secondary. The individual stellar masses are 0.63-0.69 Mdot for the primary and 0.49-0.54 Mdot for the secondary. The bright eclipsing nature of this binary has helped provide masses for both components with an accuracy rarely achieved for CVs. This binary most closely resembles a nova-like UX UMa or SW Sex type of CV. J0644+3344, however, has a longer orbital period than most UX UMa or SW Sex stars. Assuming an evolution toward shorter orbital periods, J0644+3344 is therefore likely to be a young interacting binary. The secondary star is consistent with the size and spectral type of a K8 star, but has an M0 mass.
We present the discovery of a magnetic field on the white dwarf component in the detached post common envelope binary (PCEB) CC Cet. Magnetic white dwarfs in detached PCEBs are extremely rare, in contrast to the high incidence of magnetism in single white dwarfs and cataclysmic variables. We find Zeeman-split absorption lines in both ultraviolet Hubble Space Telescope (HST) spectra and archival optical spectra of CC Cet. Model fits to the lines return a mean magnetic field strength of approximately 600-700 kG. Differences in the best-fit magnetic field strength between two separate HST observations and the high v sin i of the lines indicate that the white dwarf is rotating with a period ~0.5 hours, and that the magnetic field is not axisymmetric about the spin axis. The magnetic field strength and rotation period are consistent with those observed among the intermediate polar class of cataclysmic variable, and we compute stellar evolution models that predict CC Cet will evolve into an intermediate polar in 7-17 Gyr. Among the small number of known PCEBs containing a confirmed magnetic white dwarf, CC Cet is the hottest (and thus youngest), with the weakest field strength, and cannot have formed via the recently proposed crystallisation/spin-up scenario. In addition to the magnetic field measurements, we update the atmospheric parameters of the CC Cet white dwarf via model spectra fits to the HST data and provide a refined orbital period and ephemeris from TESS photometry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا