Do you want to publish a course? Click here

Discovery, observations and modelling of a new eclipsing polar: MASTER OT J061451.70-272535.5

323   0   0.0 ( 0 )
 Added by Hannes Breytenbach
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of a new eclipsing polar, MASTER OT J061451.70-272535.5, detected as an optical transient by MASTER auto-detection software at the recently commissioned MASTER-SAAO telescope. Time resolved (10-20 s) photometry with the SAAO 1.9-m, and 1.0-m telescopes, utilizing the SHOC EM-CCD cameras, revealed that the source eclipses, with a period of 2.08 hours (7482.9$pm$3.5$,$s). The eclipse light curve has a peculiar morphology, comprising an initial dip, where the source brightness drops to ${sim}$50% of the pre-eclipse level before gradually increasing again in brightness. A second rapid ingress follows, where the brightness drops by ${sim}$60-80%, followed by a more gradual decrease to zero flux. We interpret the eclipse profile as the result of an initial obscuration of the accretion hot-spot on the magnetic white dwarf by the accretion stream, followed by an eclipse of both the hot-spot and the partially illuminated stream by the red dwarf donor star. This is similar to what has been observed in other eclipsing polars such as HU Aqr, but here the stream absorption is more pronounced. The object was subsequently observed with South African Large Telescope (SALT) using the Robert Stobie Spectrograph (RSS). This revealed a spectrum with all of the Balmer lines in emission, a strong HeII 4686AA{} line with a peak flux greater than that of H$beta$, as well as weaker HeI lines. The spectral features, along with the structure of the light curve, suggest that MASTER OT J061451.70-272535.5 is a new magnetic cataclysmic variable, most likely of the synchronised Polar subclass.



rate research

Read More

We present photometric and spectroscopic observations of the cataclysmic variable MASTER OT J132104.04+560957.8 which strongly indicate that it is a polar with an orbital period of 91 minutes. The optical light curve shows two maxima and two minima per orbital cycle, with considerable variation in the strength of the secondary maximum and in the morphology and depth of the minima.
We present time-resolved photometry and spectroscopy of the recently classified polar MASTER OT J132104.04+560957.8. The spectrum shows a smooth, non-thermal continuum at the time of maximum light, without any individually discernible cyclotron harmonics. Using homogeneous cyclotron modeling, we interpret this as cyclotron radiation whose individual harmonics have blended together, and on this basis, we loosely constrain the magnetic field strength to be less than ~30 MG. In addition, for about one-tenth of the orbital period, the Balmer and He I emission lines transition into absorption features, with He II developing an absorption core. We use our observations of this phenomenon to test theoretical models of the accretion curtain and conclude that the H and He I lines are produced throughout the curtain, in contravention of theoretical predictions of separate H and He I line-forming regions. Moreover, a significant amount of He II emission originates within the accretion curtain, implying that the curtain is significantly hotter than expected from theory. Finally, we comment on the objects long-term photometry, including evidence that it recently transitioned into a prolonged, exceptionally stable high state following a potentially decades-long low state.
We report on the MASTER Global Robotic Net discovery of an eclipsing binary, MASTER OT J095310.04+335352.8, previously known as unremarkable star TYC 2505-672-1, which displays extreme orbital parameters. The orbital period P=69.1 yr is more than 2.5 times longer than that of epsilon-Aurigae, which is the previous record holder. The light curve is characterized by an extremely deep total eclipse with a depth of more than 4.5 mag, which is symmetrically shaped and has a total duration of 3.5 yrs. The eclipse is essentially gray. The spectra acquired with the Russian 6 m BTA telescope both at minimum and maximum light mainly correspond to an M0-1III--type red giant, but the spectra taken at the bottom of eclipse show small traces of a sufficiently hot source. The observed properties of this system can be better explained as the red giant eclipsed by a large cloud (the disk) of small particles surrounding the invisible secondary companion.
We report on photometric observations of WZ Sge-type dwarf novae, MASTER OT J211258.65+242145.4 and MASTER OT J203749.39+552210.3 which underwent outbursts in 2012. Early superhumps were recorded in both systems. During superoutburst plateau, ordinary superhumps with a period of 0.060291(4) d (MASTER J211258) and of 0.061307(9) d (MASTER J203749) in average were observed. MASTER J211258 and MASTER J203749 exhibited eight and more than four post-superoutburst rebrightenings, respectively. In the final part of the superoutburst, an increase in the superhump periods was seen in both systems. We have made a survey of WZ Sge-type dwarf novae with multiple rebrightenings, and confirmed that the superhump periods of WZ Sge-type dwarf novae with multiple rebrightenings were longer than those of WZ Sge-type dwarf novae without a rebrightening. Although WZ Sge-type dwarf novae with multiple rebrightenings have been thought to be the good candidates for period bouncers based on their low mass ratio (q) from inferred from the period of fully grown (stage B) superhumps, our new method using the period of growing superhumps (stage A superhumps), however, implies higher q than those expected from stage B superhumps. These q values appear to be consistent with the duration of the stage A superoutbursts, which likely reflects the growth time of the 3:1 resonance. We present a working hypothesis that the small fractional superhump excesses for stage B superhumps in these systems may be explained as a result that a higher gas pressure effect works in these systems than in ordinary SU UMa-type dwarf novae. This result leads to a new picture that WZ Sge-type dwarf novae with multiple rebrightenings and SU UMa-type dwarf novae without a rebrightening (they are not period bouncers) are located in the same place on the evolutionary track.
We present the results of a photometric and spectroscopic analysis of the Galactic Bulge Survey X-ray source CXOGBS J174954.5-294335 (hereafter, referred to as CX19). CX19 is a long period, eclipsing intermediate polar type cataclysmic variable with broad, single-peaked Balmer and Paschen emission lines along with HeII $lambda4686$ and Bowen blend emission features. With coverage of one full and two partial eclipses and archival photometry, we determine the ephemeris for CX19 to be HJD(eclipse) = 2455691.8581(5) + 0.358704(2)$times$N. We also recovered the white dwarf spin period of P$_{rm spin}$ = 503.32(3) seconds which gives a P$_{rm spin}$/P$_{rm orb}$ = 0.016(6), comparable to several confirmed, long period intermediate polars. CX19 also shows a clear X-ray eclipse in the 0.3-8.0 keV range observed with Chandra. Two optical outbursts were observed lasting between 6-8 hours (lower limits) reaching $sim$1.3 mags in amplitude. The outbursts, both in duration and magnitude, the accretion disc dominated spectra and hard X-ray emission are reminiscent of the intermediate polar V1223 Sgr sharing many of the same characteristics. If we assume a main sequence companion, we estimate the donor to be an early G-type star and find a minimum distance of $d approx$ 2.1 kpc and a 0.5-10.0 keV X-ray luminosity upper limit of 2.0 $times$ 10$^{33}$ erg s$^{-1}$. Such an X-ray luminosity is consistent with a white dwarf accretor in a magnetic cataclysmic variable system. To date, CX19 is only the second deeply-eclipsing intermediate polar with X-ray eclipses and the first which is optically accessible.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا