No Arabic abstract
The maximum critical temperature for superconductivity in pressurized hydrides appears at the top of superconducting domes in Tc versus pressure curves at a particular pressure, which is not predicted by standard superconductivity theories. Filling this gap we propose first-principles quantum calculation of a universal superconducting dome where Tc amplification in multigap superconductivity is driven by the Fano-Feshbach resonance due to configuration interaction between open and closed pairing channels, i.e., between multiple gaps in the BCS regime, resonating with a single gap in the BCS-BEC crossover regime. We focus on the a high-order anisotropic van Hove singularity near the Fermi level observed in band structure calculations of pressurized sulfur hydride, typical of a supermetal, associated with the array of metallic hydrogen wires modules forming a nanoscale heterostructure at atomic limit called superstripes phase. In the proposed three dimensional (3D) phase diagram the critical temperature shows a superconducting dome where Tc is a function of two variables (i) the Lifshitz parameter, eta, measuring the separation of the chemical potential from the Lifshitz transition normalized by the inter-wires coupling and (ii) the effective electron phonon coupling (g) in the appearing new Fermi surface including phonon softening. The results will be of help for material design of room temperature superconductors at ambient pressure.
The 2014-2015 prediction, discovery, and confirmation of record high temperature superconductivity above 200K in H$_3$S, followed by the 2018 extension to superconductivity in the 250-280K range in lanthanum hydride, marks a new era in the longstanding quest for room temperature superconductivity: quest achieved, at the cost of supplying 1.5-2 megabars of pressure. Predictions of numerous high temperature superconducting metal hydrides $XH_n$ ($X$=metal) have appeared, but are providing limited understanding of what drives the high transition temperature T$_c$, or what limits T$_c$. We apply an opportunistic atomic decomposition of the coupling function to show, first, that the $X$ atom provides coupling strength as commonly calculated, but is it irrelevant for superconductivity; in fact, it is important for analysis that its contribution is neglected. Five $X$H$_n$ compounds, predicted to have T$_c$ in the 150-300K range, are analyzed consistently for their relevant properties, revealing some aspects that confront conventional wisdom. A phonon frequency -- critical temperature ($omega_2$-T$_c$) phase diagram is obtained that reveals a common phase instability limiting T$_c$ at the {it low pressure} range of each compound. The hydrogen scattering strength is identified and found to differ strongly over the hydrides. A quantity directly proportional to T$_c$ in these hydrides is identified.
Due to its low atomic mass hydrogen is the most promising element to search for high-temperature phononic superconductors. However, metallic phases of hydrogen are only expected at extreme pressures (400 GPa or higher). The measurement of a record superconducting critical temperature of 190 K in a hydrogen-sulfur compound at 200 GPa of pressure[1], shows that metallization of hydrogen can be reached at significantly lower pressure by inserting it in the matrix of other elements. In this work we re-investigate the phase diagram and the superconducting properties of the H-S system by means of minima hopping method for structure prediction and Density Functional theory for superconductors. We also show that Se-H has a similar phase diagram as its sulfur counterpart as well as high superconducting critical temperature. We predict SeH3 to exceed 120 K superconductivity at 100 GPa. We show that both SeH3 and SH3, due to the critical temperature and peculiar electronic structure, present rather unusual superconducting properties.
The long-sought goal of room-temperature superconductivity has reportedly recently been realized in a carbonaceous sulfur hydride compound under high pressure, as reported by Snider et al. [1]. The evidence presented in that paper is stronger than in other similar recent reports of high temperature superconductivity in hydrides under high pressure [2-7], and has been received with universal acclaim [8-10]. Here we point out that features of the experimental data shown in Ref. [1] indicate that the phenomenon observed in that material is not superconductivity. This observation calls into question earlier similar claims of high temperature conventional superconductivity in hydrides under high pressure based on similar or weaker evidence [2-7].
It is well known that the critical temperature of multi-gap superconducting 3D heterostructures at atomic limit (HAL) made of a superlattice of atomic layers with an electron spectrum made of several quantum subbands can be amplified by a shape resonance driven by the contact exchange interaction between different gaps. The $T_C$ amplification is achieved tuning the Fermi level near the singular nodal point at a Lifshitz transition for opening a neck. Recently high interest has been addressed to the breaking of inversion symmetry which leads to a linear-in-momentum spin-orbit induced spin splitting, universally referred to as Rashba spin-orbit coupling (RSOC) also in 3D layered metals. However the physics of multi-gap superconductivity near unconventional Lifshitz transitions in 3D HAL with RSOC, being in a non-BCS regime, is not known. The key result of this work getting the superconducting gaps by Bogoliubov theory and the 3D electron wave functions by solution of the Dirac equation is the feasibility of tuning multi-gap superconductivity by suitably matching the spin-orbit length with the 3D superlattice period. It is found that the presence of the RSOC amplifies both the k dependent anisotropic gap function and the critical temperature when the Fermi energy is tuned near the circular nodal line. Our results suggest a method to effectively vary the effect of RSOC on macroscopic superconductor condensates via the tuning of the superlattice modulation parameter in a way potentially relevant for spintronics functionalities in several existing experimental platforms and tunable materials needed for quantum devices for quantum computing.
In the last 43 years several hints were reported suggesting the existence of granular superconductivity above room temperature in different graphite-based systems. In this paper some of the results are reviewed, giving special attention to those obtained in water and n-heptane treated graphite powders, commercial and natural bulk graphite samples with different characteristics as well as transmission electron microscope (TEM) lamellae. The overall results indicate that superconducting regions exist and are localized at certain internal interfaces of the graphite structure. The existence of the rhombohedral graphite phase in all samples with superconducting-like properties suggests its interfaces with the Bernal phase as a possible origin for the high-temperature superconductivity, as theoretical calculations predict. High precision electrical resistance and magnetization measurements were used to identify a transition at $T_c gtrsim 350~$K. To check for the existence of true zero resistance paths in the samples we used local magnetic measurements, which results support the existence of superconducting regions at such high temperatures.