Do you want to publish a course? Click here

Hadron gas in the presence of a magnetic field using non-extensive statistics: A transition from diamagnetic to paramagnetic system

163   0   0.0 ( 0 )
 Added by Raghunath Sahoo
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Non-central heavy-ion collisions at ultra-relativistic energies are unique in producing magnetic fields of the largest strength in the laboratory. Such fields being produced at the early stages of the collision, could affect the properties of Quantum Chromodynamics (QCD) matter formed in the relativistic heavy-ion collisions. The transient magnetic field leaves its reminiscence, which in principle, can affect the thermodynamic and transport properties of the final state dynamics of the system. In this work, we study the thermodynamic properties of a hadron gas in the presence of an external static magnetic field using a thermodynamically consistent non-extensive Tsallis distribution function. Various thermodynamical observables such as polytropic index, energy density ($epsilon$), entropy density ($s$), pressure ($P$) and speed of sound ($c_{rm s}$) are studied. Investigation of magnetization ($M$) is also performed and this analysis reveals an interplay of diamagnetic and paramagnetic nature of the system in presence of the magnetic field of varying strength. Further to understand the system dynamics under equilibrium and non-equilibrium conditions, the effect of non-extensive parameter ($q$) on the above observables is also studied.



rate research

Read More

81 - Pok Man Lo 2020
We study the impact of a finite magnetic field on the deconfinement phase transition for heavy quarks by computing the fluctuations of the Polyakov loops. It is demonstrated that the explicit Z(3) breaking field increases with the magnetic field, leading to a decrease in the (pseudo) critical temperatures and a shrinking first-order region in the phase diagram. Phenomenological equations that capture the behaviors of the Z(3) breaking field at strong and weak magnetic fields for massive and massless quarks are given. Lastly, we explore the case of dynamical light quarks and demonstrate how an improved constituent quark mass function can enforce the correct magnetic field dependence of the deconfinement temperature in an effective model, as observed in Lattice QCD calculations.
The speed of sound ($c_s$) is studied to understand the hydrodynamical evolution of the matter created in heavy-ion collisions. The quark-gluon plasma (QGP) formed in heavy-ion collisions evolves from an initial QGP to the hadronic phase via a possible mixed phase. Due to the system expansion in a first order phase transition scenario, the speed of sound reduces to zero as the specific heat diverges. We study the speed of sound for systems, which deviate from a thermalized Boltzmann distribution using non-extensive Tsallis statistics. In the present work, we calculate the speed of sound as a function of temperature for different $q$-values for a hadron resonance gas. We observe a similar mass cut-off behaviour in non-extensive case for $c^{2}_s$ by including heavier particles, as is observed in the case of a hadron resonance gas following equilibrium statistics. Also, we explicitly present that the temperature where the mass cut-off starts, varies with the $q$-parameter which hints at a relation between the degree of non-equilibrium and the limiting temperature of the system. It is shown that for values of $q$ above approximately 1.13 all criticality disappear in the speed of sound, i.e. the decrease in the value of the speed of sound, observed at lower values of $q$, disappears completely.
We have attempted to build a parametric based simplified and analytical model to map the interaction of quarks and gluons in presence of magnetic field, which has been constrained by quark condensate and thermodynamical quantities like pressure, energy density etc., obtained from the calculation of lattice quantum chromodynamics. To fulfill that mapping, we have assumed a parametric temperature and magnetic field dependent degeneracy factor, average energy, momentum and velocity of quarks and gluons. Implementing this QCD interaction in calculation of transport coefficient at finite magnetic field, we have noticed that magnetic field and interaction both are two dominating sources, for which the values of transport coefficients can be reduced. Though the methodology is not so robust, but with the help of its simple parametric expressions, one can get a quick rough estimation of any phenomenological quantity, influenced by temperature and magnetic field dependent QCD interaction.
In this paper we discuss the interacting hadron resonance gas model in presence of a constant external magnetic field. The short range repulsive interaction between hadrons are accounted through van der Waals excluded volume correction to the ideal gas pressure. Here we take the sizes of hadrons as $r_pi$ (pion radius) $= 0$ fm, $r_K$ (kaon radius) $= 0.35$ fm, $r_m$ (all other meson radii) $= 0.3$ fm and $r_b$ (baryon radii) $= 0.5$ fm. We analyse the effect of uniform background magnetic field on the thermodynamic properties of interacting hadron gas. We especially discuss the effect of interactions on the behaviour of magnetization of low temperature hadronic matter. The vacuum terms have been regularized using magnetic field independent regularization scheme. We find that the magnetization of hadronic matter is positive which implies that the low temperature hadronic matter is paramagnetic. We further find that the repulsive interactions have very negligible effect on the overall magnetization of the hadronic matter and the paramagnetic property of the hadronic phase remains unchanged. We have also investigated the effects of short range repulsive interactions as well as the magnetic field on the baryon and electric charge number susceptibilities of hadronic matter within the ambit of excluded volume hadron resonance gas model.
163 - J.J. He , S.Q. Hou , A. Parikh 2014
In the primordial Big Bang nucleosynthesis (BBN), only the lightest nuclides (D, $^3$He, $^4$He, and $^7$Li) were synthesized in appreciable quantities, and these relics provide us a unique window on the early universe. Currently, BBN simulations give acceptable agreement between theoretical and observed abundances of D and $^4$He, but it is still difficult to reconcile the predicted $^7$Li abundance with the observation for the Galactic halo stars. The BBN model overestimates the primordial $^7$Li abundance by about a factor of three, so called the cosmological lithium problem, a long-lasting pending issue in BBN. Great efforts have been paid in the past decades, however, the conventional nuclear physics seems unable to resolve such problem. It is well-known that the classical Maxwell-Boltzmann (MB) velocity distribution has been usually assumed for nuclei in the Big-Bang plasma. In this work, we have thoroughly investigated the impact of non-extensive Tsallis statistics (deviating from the MB) on thermonuclear reaction rates involved in standard models of BBN. It shows that the predicted primordial abundances of D, $^4$He, and $^7$Li agree very well with those observed ones by introducing a non-extensive parameter $q$. It is discovered that the velocities of nuclei in a hot Big-Bang plasma indeed violate the classical Maxwell-Boltzmann (MB) distribution in a very small deviation of about 6.3--8.2%. Thus, we have for the first time found a new solution to the cosmological lithium problem without introducing any mysterious theories. Furthermore, the implications of non-extensive statistics in other exotic high-temperature and density astrophysical environments should be explored, which might offer new insight into the nucleosynthesis of heavy elements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا