Do you want to publish a course? Click here

The mean-field behavior of the nearest-neighbor oriented percolation on the BCC lattice above $8+1$ dimensions

97   0   0.0 ( 0 )
 Added by Yoshinori Kamijima
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In this paper, we consider nearest-neighbor oriented percolation with independent Bernoulli bond-occupation probability on the $d$-dimensional body-centered cubic (BCC) lattice $mathbb{L}^d$ and the set of non-negative integers $mathbb{Z}_+$. Thanks to the nice structure of the BCC lattice, we prove that the infrared bound holds on $mathbb{L}^dtimesmathbb{Z}_+$ in all dimensions $dgeq 9$. As opposed to ordinary percolation, we have to deal with the complex numbers due to asymmetry induced by time-orientation, which makes it hard to estimate the bootstrapping functions in the lace-expansion analysis from above. By investigating the Fourier-Laplace transform of the random-walk Green function and the two-point function, we drive the key properties to obtain the upper bounds and resolve a problematic issue in Nguyen and Yangs bound.

rate research

Read More

We discuss spin models on complete graphs in the mean-field (infinite-vertex) limit, especially the classical XY model, the Toy model of the Higgs sector, and related generalizations. We present a number of results coming from the theory of large deviations and Steins method, in particular, Cramer and Sanov-type results, limit theorems with rates of convergence, and phase transition behavior for these models.
The aim of this survey is to explain, in a self-contained and relatively beginner-friendly manner, the lace expansion for the nearest-neighbor models of self-avoiding walk and percolation that converges in all dimensions above 6 and 9, respectively. To achieve this, we consider a $d$-dimensional version of the body-centered cubic (BCC) lattice, on which it is extremely easy to enumerate various random-walk quantities. Also, we choose a particular set of bootstrapping functions, by which a notoriously complicated part of the lace-expansion analysis becomes rather transparent.
188 - John Z. Imbrie 2003
This article will review recent results on dimensional reduction for branched polymers, and discuss implications for critical phenomena. Parisi and Sourlas argued in 1981 that branched polymers fall into the universality class of the Yang-Lee edge in two fewer dimensions. Brydges and I have proven in [math-ph/0107005] that the generating function for self-avoiding branched polymers in D+2 continuum dimensions is proportional to the pressure of the hard-core continuum gas at negative activity in D dimensions (which is in the Yang-Lee or $i phi^3$ class). I will describe how this equivalence arises from an underlying supersymmetry of the branched polymer model. - I will also use dimensional reduction to analyze the crossover of two-dimensional branched polymers to their mean-field limit, and to show that the scaling is given by an Airy function (the same as in [cond-mat/0107223]).
We previously reported on a recursive method to generate the expansion of the lattice Green function of the $d$-dimensional face-centred cubic lattice (fcc). The method was used to generate many coefficients for d=7 and the corresponding linear differential equation has been obtained. In this paper, we show the strength and the limit of the method by producing the series and the corresponding linear differential equations for d=8, 9, 10, 11, 12. The differential Galois groups of these linear differential equations are shown to be symplectic for d=8, 10, 12 and orthogonal for d= 9, 11. The recursion relation naturally provides a 2-dimensional array $ T_d(n,j)$ where only the coefficients $ t_d(n,0)$ correspond to the coefficients of the lattice Green function of the d-dimensional fcc. The coefficients $ t_d(n,j)$ are associated to D-finite bivariate series annihilated by linear partial differential equations that we analyze.
136 - Yunqing Ouyang , Youjin Deng , 2018
We investigate the influence of the range of interactions in the two-dimensional bond percolation model, by means of Monte Carlo simulations. We locate the phase transitions for several interaction ranges, as expressed by the number $z$ of equivalent neighbors. We also consider the $z to infty$ limit, i.e., the complete graph case, where percolation bonds are allowed between each pair of sites, and the model becomes mean-field-like. All investigated models with finite $z$ are found to belong to the short-range universality class. There is no evidence of a tricritical point separating the short-range and long-range behavior, such as is known to occur for $q=3$ and $q=4$ Potts models. We determine the renormalization exponent describing a finite-range perturbation at the mean-field limit as $y_r approx 2/3$. Its relevance confirms the continuous crossover from mean-field percolation universality to short-range percolation universality. For finite interaction ranges, we find approximate relations between the coordination numbers and the amplitudes of the leading correction terms as found in the finite-size scaling analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا